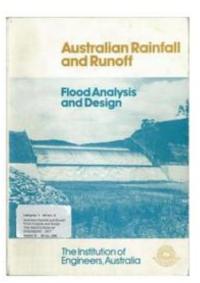


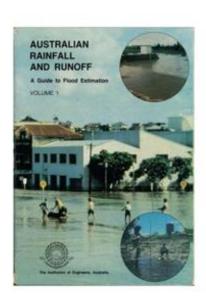
Australian Rainfall and Runoff

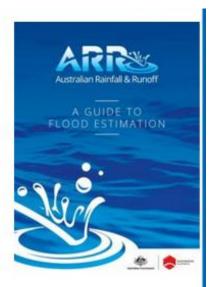
Mark Babister

Monique Retallick

www.wmawater.com.au

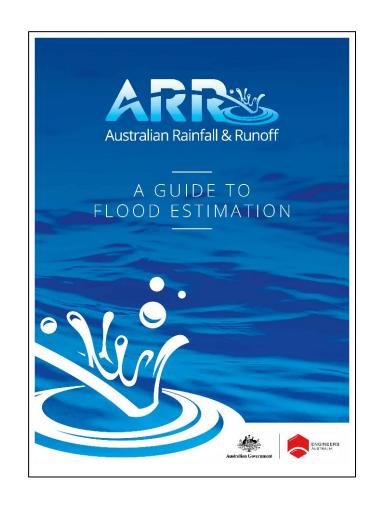

Overview


- General ARR
- ARR data hub
- Temporal patterns Ensemble hydrology


History

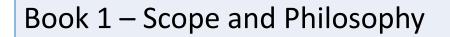
- 1958 (version 1)
- 1977 (version 2)
- 1987 (version 3)
- 1999 (version 3.1 update for extreme floods)
- 2016/2019 (version 4)

Big Changes In Practice



- Ensemble and Monte Carlo approaches to better capture variability
- Move away from simple burst approaches
- Less reliance on the rational method
- RFFE method
- Incorporation of Climate change
- Incorporation of blockage of hydraulic structures

Creative Commons



- Document is creative commons
- Reuse with attribution
- Web arr.ga.gov.au
- Epub (not recommended) arr.ga.gov.au
- Pdf (full version and by book) -
- http://www.arr-software.org/arrdocs

The Books

9 Books 53 chapters

Book 2 – Rainfall Estimation

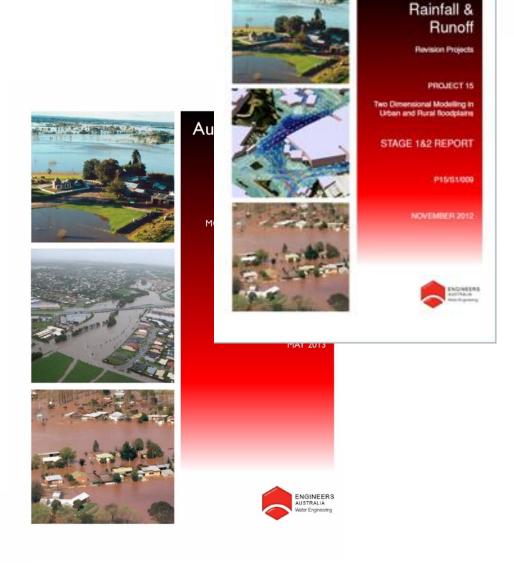
Book 3 – Peak Flow Estimation

Book 4 – Catchment Simulation for Design Flood Estimation

Book 5 – Flood Hydrograph Estimation

Book 6 – Flood Hydraulics

Book 7 – Application of Catchment Modelling Systems


Book 8 – Estimation of Very Rare to Extreme Floods

Book 9 – Runoff in Urban Areas

Supporting Documents

- Two dimensional modelling in urban and rural floodplains
- Monte Carlo simulation techniques
- Project reports

Australian

Key changes in ARR 2016

Design Input	ARR 1987	ARR 2016
Intensity Frequency Duration (IFD)	Used BoM rainfall gauges Presented as static A2 maps	Uses BoM and other agency gauges Online
Areal Reduction Factors (ARF)	Based on USA data Not available for long durations	Based on Australian data
Losses	Based on jurisdictional based advice (personal communication only)	National advice for rural and urban catchments
Baseflow	Methods but no ungauged catchment advice	Australia wide advice
Temporal Patterns	Average Variability Method Peak Burst Patterns for less than 30 year average recurrence interval (ARI) and rarer than 30 year ARI	Temporal patterns based on historic records, multi pattern for each design quantile and complete storms, with pre burst considered.

ARR Data Hub

data.arr-software.org

OME About Limitations Changelog Publications Jurisdiction Specifics +

ATTENTION: This site was updated recently, changing some of the functionality. Please see the changelog for further information

ARR Data Hub

Enter coordinates or upload a shapefile

ATTENTION: This site was updated 9/05/19

A changelog can be found here

Other Preburst Depths

A legacy site for the ARR Data-Hub has been established http://data-legacy.arr-software.org/. It contains a version of the application which was completed in June 2018, and was created for anyone whose requests no longer function with the newer code on the production server.

ongitude		Jo.
151.205608	+	Jakarta*
atitude		
-33.869929		
Jpload Shapefile (clear) Browse No files selected.		
River Region		
ARF Parameters		
Storm Losses		
Temporal Patterns		
Area Temporal Patterns	Zoo	om To Marker
BOM IFD Depths		
Median Preburst Depths		

Home About Limitations Changelog Publications Jurisdiction Specifics →

ATTENTION: This site was updated recently, changing some of the functionality. Please see the changelog for further information

ARR Data Hub

Enter coordinates or upload a shapefile

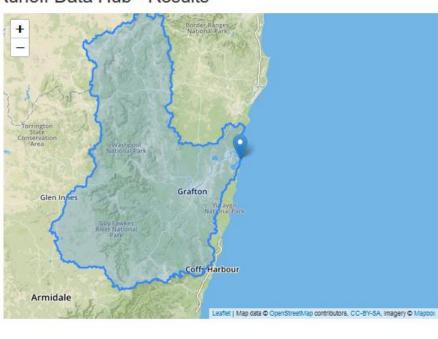
ATTENTION: This site was updated 9/05/19

A changelog can be found here

Other Preburst Depths

A legacy site for the ARR Data-Hub has been established http://data-legacy.arr-software.org/. It contains a version of the application which was completed in June 2018, and was created for anyone whose requests no longer function with the newer code on the production server.

Longitude	+ Sydney, NSW Search
153.36	Chatsworth Hill State Conservation Conservation
Latitude	Area Goodwood Island
-29.439	Warregah Island
Upload Shapefile (clear) Browse No files selected.	Harwood Island
River Region	WAFTS EN ROMINS POINT ROLL ROMINS POINT ROLL
ARF Parameters	Tamba
Storm Losses	Maclean Vaeg Nature Reserve
Temporal Patterns	Clarence Estinary Nature Reserve
Area Temporal Patterns	Zoom To Marker Zoom To Marker Leaflet Map data © OpenStreetMap contributors, CC-EY-SA, Imagery © Mapbox
BOM IFD Depths	
Median Preburst Depths and Ratios	



ATTENTION: This site was updated recently, changing some of the functionality. Please see the changelog for further information

Australian Rainfall & Runoff Data Hub - Results

Longitude	153.359
Latitude	-29.439
Selected Regions (clear)	
River Region	show
ARF Parameters	show
Storm Losses	show
Temporal Patterns	show
Areal Temporal Patterns	show
BOM IFDs	show
Median Preburst Depths and Ratios	show
10% Preburst Depths	show
25% Preburst Depths	show
75% Preburst Depths	show
90% Preburst Depths	show
Interim Climate Change Factors	show
Probability Neutral Burst Initial Loss	show

Data

River Region		
Division	South East Coast (NSW)	
River Number	4	
River Name	Clarence River	

Layer Info

Time Accessed	07 July 2020 10:12PM
Version	2016 v1

Data

River Region

Division	South East Coast (NSW)
River Number	4
River Name	Clarence River

Layer Info

Time Accessed	07 July 2020 10:12PM
Version	2016_v1

ARF Parameters

Zone

$$ARF = Min \left\{ 1, \left[1 - a \left(Area^b - {\rm clog}_{10} Duration \right) Duration^{-d} \right. \\ \left. + e Area^f Duration^g \left(0.3 + {\rm log}_{10} AEP \right) \right. \\ \left. + h 10^{i Area \frac{Duration}{1460}} \left(0.3 + {\rm log}_{10} AEP \right) \right] \right\}$$
 Zone a b c d e f g h i East Coast North 0.327 0.241 0.448 0.36 0.00096 0.48 -0.21 0.012 -0.0013

Layer Info

Time Accessed	07 July 2020 10:12PM
Version	2016_v1

Short Duration ARF

$$\begin{split} ARF &= Min \left[1, 1 - 0.287 \left(Area^{0.265} - 0.439 \text{log}_{10}(Duration) \right). Duration^{-0.36} \right. \\ &+ 2.26 \times 10^{-3} \times Area^{0.226}. Duration^{0.125} \left(0.3 + \text{log}_{10}(AEP) \right) \\ &+ 0.0141 \times Area^{0.213} \times 10^{-0.021 \frac{(Duration - 100)^2}{1440}} \left(0.3 + \text{log}_{10}(AEP) \right) \right] \end{split}$$

Storm Losses

Note: Burst Loss = Storm Loss - Preburst

Note: These losses are only for rural use and are NOT FOR DIRECT USE in urban areas

Note: As this point is in NSW the advice provided on losses and pre-burst on the NSW Specific Tab of the ARR Data Hub is to be considered. In NSW losses are derived considering a hierarchy of approaches depending on the available loss information. The continuing storm loss information from the ARR Datahub provided below should only be used where relevant under the loss hierarchy (level 5) and where used is to be multiplied by the factor of 0.4.

ID	16670.0
Storm Initial Losses (mm)	24.0
Storm Continuing Losses (mm/h)	3.6

Layer Info

Time Accessed	07 July 2020 10:12PM
Version	2016_v1

Temporal Patterns | Download (.zip)

code	ECsouth
Label	East Coast South

Layer Info

Time Accessed	07 July 2020 10:12PM
Version	2016_v2

Areal Temporal Patterns | Download (.zip)

code	ECsouth
arealabel	East Coast South

BOM IFDs

Click here to obtain the IFD depths for catchment centroid from the BoM website

Median Preburst Depths and Ratios

Values are of the format depth (ratio) with depth in mm

		,				
min (h)\AEP(%)	50	20	10	5	2	1
60 (1.0)		4.2 (0.084)				
90 (1.5)	4.7 (0.105)	6.2 (0.107)	7.3 (0.107)	8.3 (0.106)	12.4 (0.133)	15.5 (0.148)
120 (2.0)		10.3 (0.161)		15.1 (0.174)		
180 (3.0)		19.2 (0.258)				
360 (6.0)	8.2 (0.114)	21.9 (0.224)	31.0 (0.264)	39.7 (0.288)		76.6 (0.399)
720 (12.0)		24.5 (0.185)		44.1 (0.230)		77.3 (0.286)
1080 (18.0)		16.2 (0.102)				
1440 (24.0)	6.4 (0.051)	14.4 (0.080)		24.8 (0.093)		
2160 (36.0)		7.0 (0.033)				
2880 (48.0)		3.9 (0.016)				
4320 (72.0)	0.0 (0.000)	1.3 (0.005)	2.2 (0.007)	3.1 (0.008)		9.3 (0.017)

Layer Info

Time Accessed	07 July 2020 10:12PM
Version	2016_v2

Layer Info

Layer Info

Time Accessed	07 July 2020 10:12PM
Version	2018_v1
Note	Preburst interpolation methods for catchment wide preburst has been slightly altered. Point values remain unchanged.

Values are of the format depth (ratio) with depth in mm

min (h)\AEP(%)	50	20	10	5	2	1
60 (1.0)	0.0	0.0	0.0	0.0	0.0	0.0
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)

Layer Info

Time Accessed	07 July 2020 10:12PM
Version	2018_v1
Note	Preburst interpolation methods for catchment wide

Interim Climate Change Factors

	RCP 4.5	RCP6	RCP 8.5
2030	0.869 (4.3%)	0.783 (3.9%)	0.983 (4.9%)
2040	1.057 (5.3%)	1.014 (5.1%)	1.349 (6.8%)
2050	1.272 (6.4%)	1.236 (6.2%)	1.773 (9.0%)
2060	1.488 (7.5%)	1.458 (7.4%)	2.237 (11.5%)
2070	1.676 (8.5%)	1.691 (8.6%)	2.722 (14.2%)
2080	1.810 (9.2%)	1.944 (9.9%)	3.209 (16.9%)
2090	1.862 (9.5%)	2.227 (11.5%)	3.679 (19.7%)

Layer Info

Time Accessed	07 July 2020 10:12PM
Version	2019_v1
Note	ARR recommends the use of RCP4.5 and RCP 8.5 values. These have been updated to the values that can be found on the climate change in Australia website.

wma water

Probability Neutral Burst Initial Loss

min (h)\AEP(%)	50	20	10	5	2	1
60 (1.0)	11.8	7.3	8.4	7.9	7.5	4.5
90 (1.5)	11.5	7.6	8.4	7.8	6.2	3.1
120 (2.0)	11.4	7.4	7.9	6.8	6.6	2.2
180 (3.0)	10.2	6.3	6.7	6.6	6.6	2.1
360 (6.0)	10.8	6.7	6.6	6.5	7.8	2.8
720 (12.0)	12.8	7.1	6.5	6.7	6.4	4.1
1080 (18.0)	14.4	8.8	9.7	8.3	8.3	4.6
1440 (24.0)	15.8	10.5	10.0	9.6	7.7	5.6
2160 (36.0)	19.1	12.9	13.5	11.4	11.8	5.9
2880 (48.0)	21.8	14.7	15.0	12.5	13.9	6.5
4320 (72.0)	24.4	18.2	17.4	13.8	17.3	7.0

Layer Info

Time Accessed	07 July 2020 10:12PM
Version	2018_v1
Note	As this point is in NSW the advice provided on losses and pre-burst on the NSW Specific Tab of the ARR Data Hub is to be considered. In NSW losses are derived considering a hierarchy of approaches depending on the available loss information. Probability neutral burst initial loss values for NSW are to be used in place of the standard initial loss and pre-burst as per the losses hierarchy.

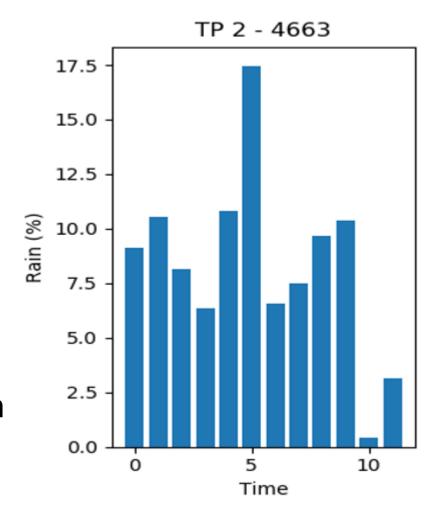
Download TXT

Download JSON

Download PDF

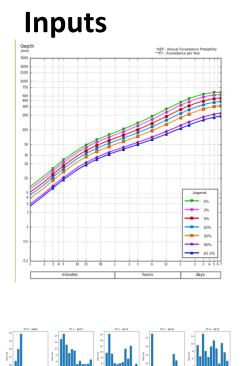
Data Hub - Data And Outputs

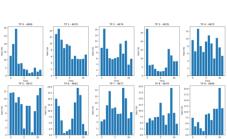
Data	Use
River region and map	check
IFD	Link to BoM
ARF	recommended
Temporal Patterns	recommended
Pre burst	recommended
Losses	In the absence of local data
Climate change factors	In the absence of location specific studies
Baseflow	In the absence of local data

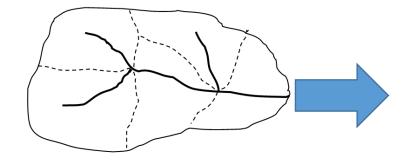

Pooled

Regionalised Predictor

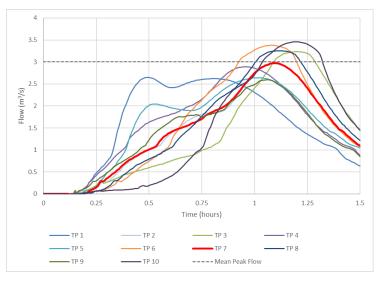
ARR 2019 Temporal patterns – big changes



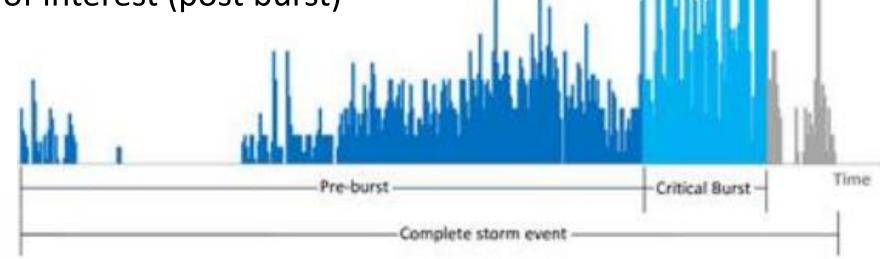

- Considers the variability of real storms
 - Ensemble of 10 patterns
 - Patterns attempt to capture the variability of real storms
 - No such thing as a typical pattern for every catchment
- Consideration of pre-burst rainfall
 - Rainfall before the main burst
 - Better reflect the interaction with losses from real events



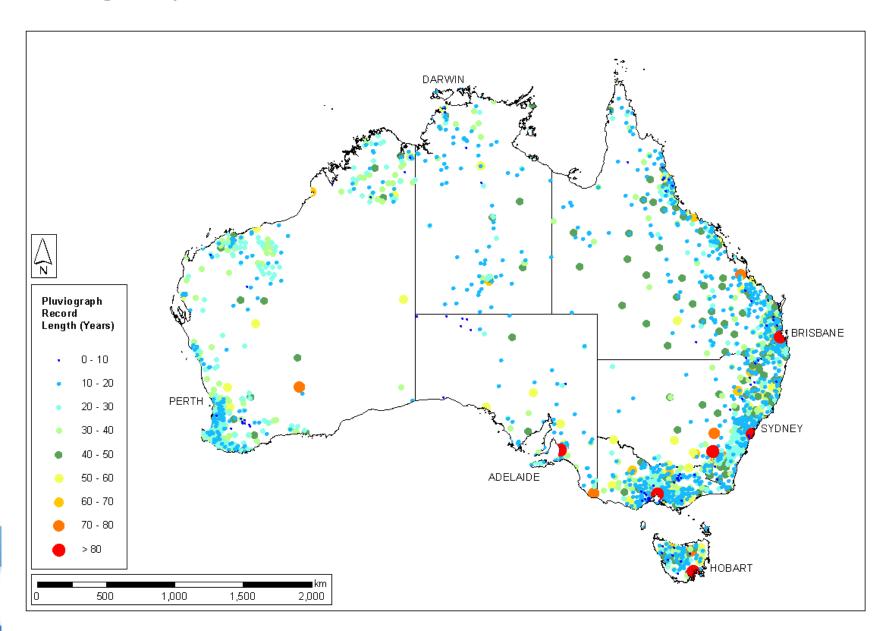
Ensemble Hydrology



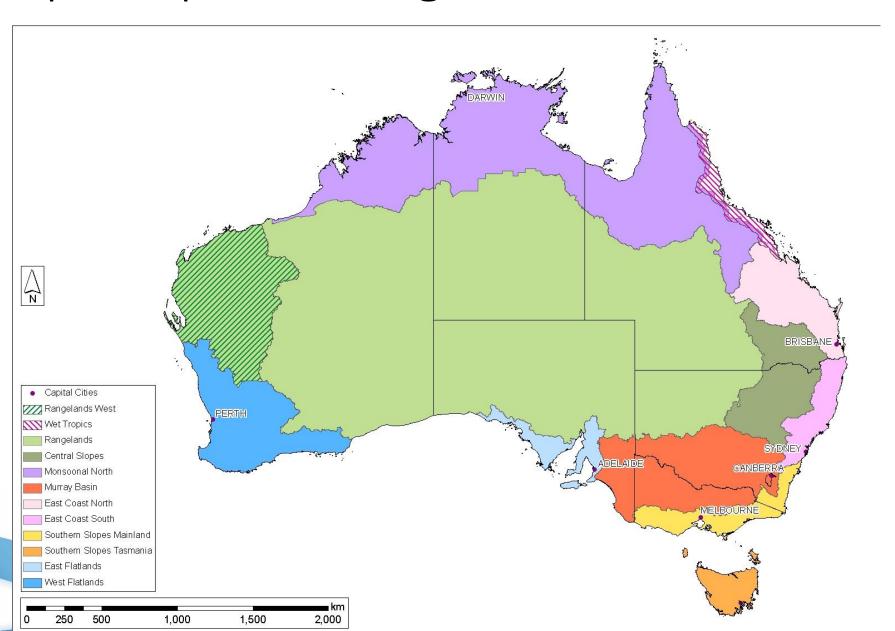
Model

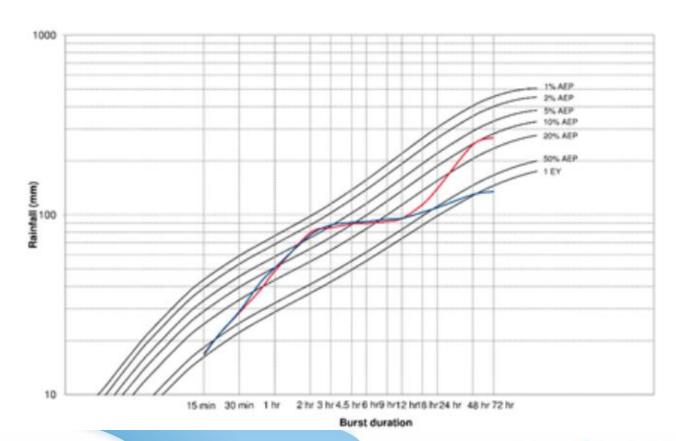


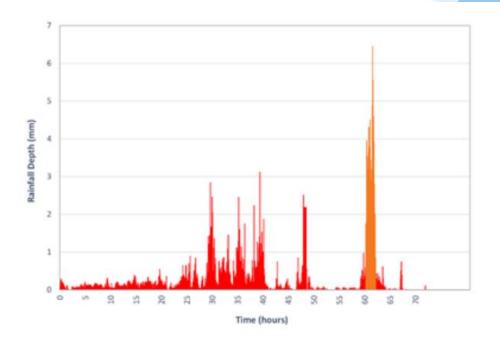
Results

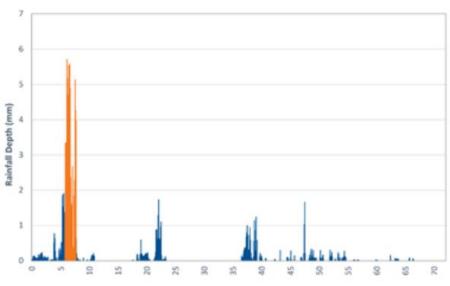

Storms and Bursts (ARR 1987 and ARR 2019)

- Real rainfall occurs as complete storms
- Design methods use bursts
- After rainfall temporal patterns usually have the largest influence on peak flow
- Complete storms can have rainfall before(pre burst) and after the burst of interest (post burst)

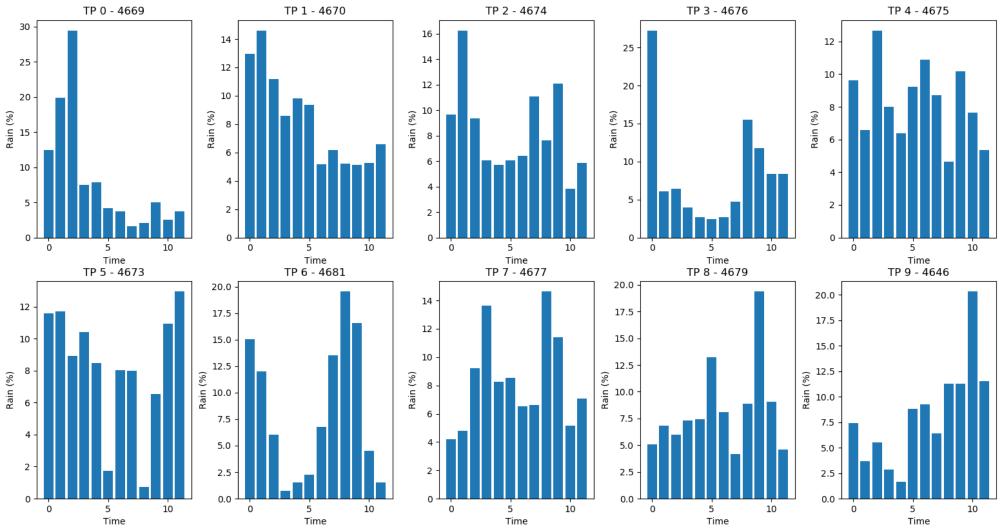

Pluviograph database



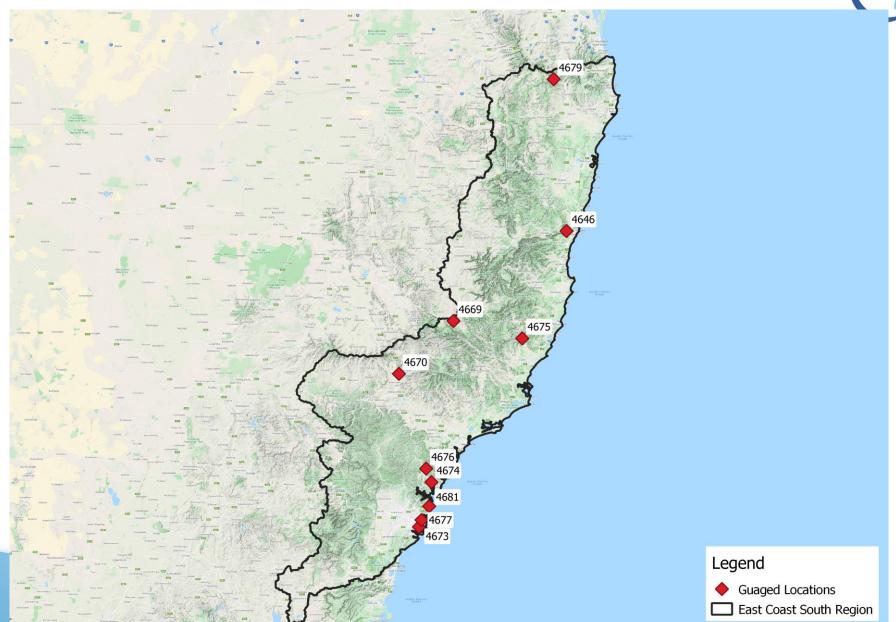

Temporal pattern regions



Very different storms can have the same IFD characteristics

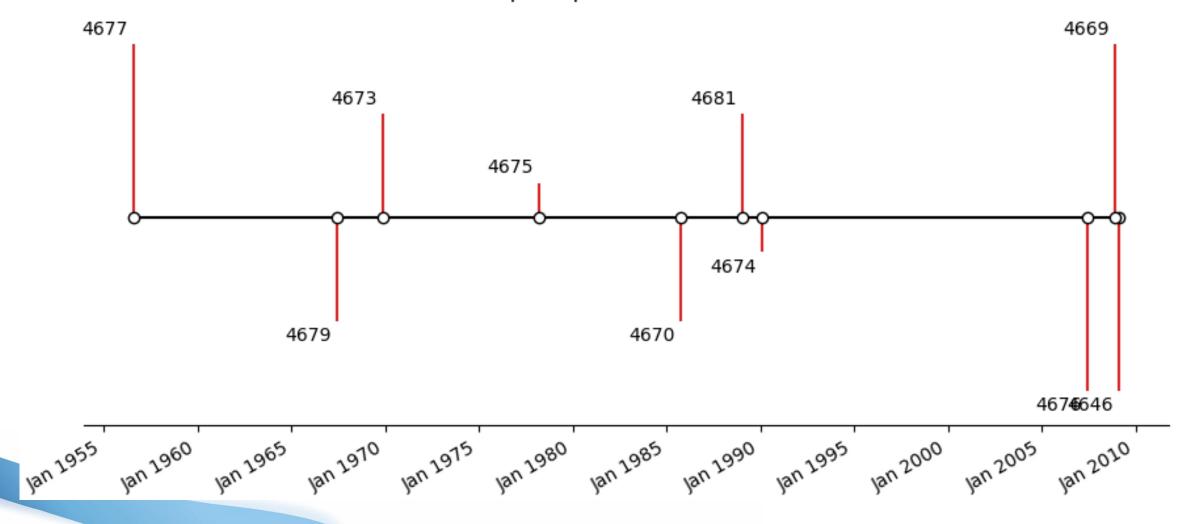


Ensemble patterns capture variability of real patterns



3 hour patterns ranked from front loaded to back loaded

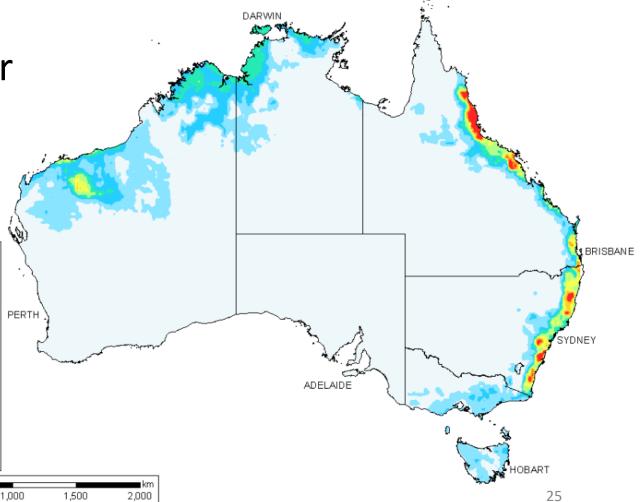
Patterns sourced from locations in the zone



Patterns taken from different storms

Temporal pattern storm dates

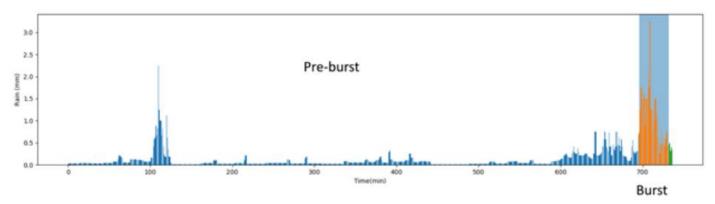
Pre burst

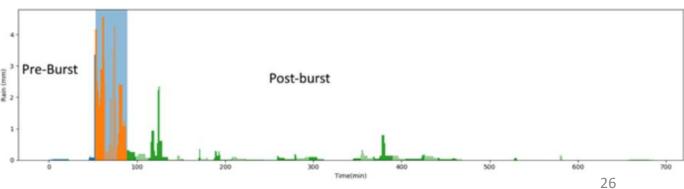

• Important for losses

Varies throughout the country

Datahub provides estimates for

Pre-burst Depth (mm)


10%,25%,50%,75% & 90%



Pre burst cont...

- Varies between storms
- Usually use the median (50%)
- Where its extreme need to consider the distribution

Thank You for Listening

Questions

