

Managing uncertainty in water resource modelling: where to start?

Luk Peeters (luk.peeters@csiro.au) Research theme leader Future Science Platform Deep Earth Imaging ICEWaRM Webinar 30 March 2017

CSIRO LAND AND WATER www.csiro.au

Why uncertainty analysis?

- The Economist 2016 most liveable cities
- Should I move?
- What is the scoring based on? / Who did the scoring?
- How different is the score between Adelaide and Melbourne?

http://www.eiu.com/public/topical_report.aspx?campaignid=liveability2016

Uncertainty analysis

- Communication to stakeholders
- There is not a single answer from a model
- There is a range of predictions that are consistent with our current understanding of the system
- What if our current understanding of the system is wrong? How will that affect predictions?
- Honest and transparent on what we do and do not know
 - identify and remediate knowledge gaps
 - robust management strategies
- Build confidence in what we do know

Guillaume J H A, Hunt R J, Comunian A, Blakers R S and Fu B (2016) Methods for Exploring Uncertainty in Groundwater Management Predictions Integrated Groundwater Management, 711-737 http://dx.doi.org/10.1007/978-3-319-23576-9_28

Example

- Proposed irrigation development **D**, SW and GW
- Regulated river
- River maximally losing / disconnect from GW
- Alluvial aquifer
- Geological fault may be barrier to flow
- Spring **S**
 - drawdown threshold 20 cm
- Stock & Domestic bore **B**
 - drawdown threshold 200 cm
- River with RAMSAR wetland **R** downstream
 - needs flood every 3 years
 - cannot be dry for more than 14 days
- build model and do uncertainty analysis

Where to start?

- Define objective
 - why model?
 - what is the research question?
 - Is the proposed development sustainable?
- Define predictions
 - what kind of model output do you need?
 - In the next 15 years, the development may not cause
 - > 20cm drawdown @ S
 - > 200cm drawdown @ B
 - increase no flow days @ R above 14 days
 - decrease flooding @ R to less than 1 in 3 years
- UA is only possible on predictions, not on a model

Liu Y, Gupta H, Springer E and Wagener T (2008) Linking science with environmental decision making: Experiences from an integrated modeling approach to supporting sustainable water resources management *Environmental Modelling & Software, 23*, 846-858

Uncertainty analysis workflow

Qualitative uncertainty analysis

- formal, structured discussion of all assumptions and model choices
- scoring (lo-med-hi) of 4 attributes:
 - data
 - Would this choice change if I had more data?
 - resources
 - Would this choice change if I had more time and money?
 - technical
 - Would this choice change if I had a better model?
 - effect on predictions
 - So what?

• Faults

- D: High | R: High | T: High
- GW: High | SW: Low
- no coupled SW-GW model
 - D: Medium | R: High | T: Medium
 - GW: Low | SW: Low
 - provided river is disconnected

Kloprogge P, van der Sluijs J P and Petersen A C (2011) A method for the analysis of assumptions in model-based environmental assessments Environmental Modelling & Software, Thematic issue on the assessment and evaluation of environmental models and software, 26, 289-301

Peeters L J M, Pagendam D, Crosbie R S, Viney N R, Rachakonda P K, Dawes W R, Gao L, Marvanek. S, Zhang Y Q and McVicar T R (2017) Building confidence in environmental impact models through quantitative and qualitative uncertainty analysis *In preparation for Environmental Modelling and Software*,

What do I need to change to my model?

- parameter:
 - any model aspect you can change in an automated fashion
- automation / scripting
 - pre-processing:
 - multipliers / scaling / geostats
 - model
 - workflow of submodels
 - post-processing:
 - equivalents to observations
 - predictions combine multiple scenario's (baseline minus development)
- stress test
 - break the model
 - do the scripts work?
 - does the model pass the laughing test?
 - parameter screening & ranges

How to bring in observations?

- observations
 - measurements of state variables
 - streamflow at gauge G
 - knowledge of the system
 - disconnected, ephemeral river
- objective / likelihood function
 - High vs low/no flow
 - River losses ~ GW / aquifer prop
- acceptance criteria
 - how much mismatch can be tolerated?
 - range
 - standard deviation of residuals
 - from observation uncertainty
 - rating curve uncertainty
 - minimum observable flow?

Guse B, Pfannerstill M, Gafurov A, Fohrer N and Gupta H (2016) Demasking the integrated information of discharge: Advancing sensitivity analysis to consider different hydrological components and their rates of change *Water Resources Research*, *52*, 8724-8743

Constraining parameters and predictions

- specify prior for each parameter
 - informative
 - un-informative
- inference
 - constrain parameters and predictions with observations
 - PEST, DREAM, BATEA,...
- reducing parameter uncertainty does not necessarily mean reducing predictive uncertainty

White J T, Doherty J E and Hughes J D (2014) Quantifying the predictive consequences of model error with linear subspace analysis *Water Resources Research*, *50*, 1152-1173 http://dx.doi.org/10.1002/2013WR014767

Parameter identifiability vs predictive uncertainty

- historical groundwater level observations *
- Groundwater level:
 - diffuse recharge
 - river recharge
 - hydraulic properties
- Drawdown at **S** and **B**:
 - hydraulic properties
 - pumping rate at D
 - permeability fault
- Groundwater level obs
 - constrain river and diffuse recharge
 - do not constrain properties uniquely
 - do not reduce predictive uncertainty

Communication and reporting

- 8 steps in risk communication
- 1. All we have to do is get the numbers right
- 2. All we have to do is tell them the numbers
- 3. All we have to do is explain what we mean by the numbers
- 4. All we have to do is show them they've accepted similar risks in the past
- 5. All we have to do is show them it's a good deal for them
- 6. All we have to do is treat them nice
- 7. All we have to do is make them partners
- 8. All of the above

Spiegelhalter D (2017) Risk and uncertainty communication Annual review of statistics and its application, 4, 40

Communication and reporting

- report uncertainty as integral part of tables, charts and maps
- combine words, tables, charts and maps
- qualitative uncertainty analysis
- engage with stakeholders
- numeracy is important, trust is essential
- open and transparent

Spiegelhalter D, Pearson M and Short I (2011) Visualizing Uncertainty About the Future *Science*, *333*, 1393-1400 http://www.sciencemag.org/content/333/6048/1393.abstract

Conclusions

- Figure out what the question is
- Entertain the possibility that you are wrong
- Observations are everything you know and measure
- Define what is a good model
- Past performance may not be an indication for future results
- Build trust by being trustworthy

Thank you

luk.peeters@csiro.au

https://www.flickr.com/photos/dullhunk/202872717/

15 | Uncertainty analysis: where to start | Luk Peeters