

Nitrosamines 😂					
Nitrosamine	Formula	MW	Carcinogenicity		
N-nitrosodimethylamine (NDMA)	C ₂ H ₆ N ₂ O	74	Liver, lung, kidney tumors in rats; liver tumors in hamsters		
N-nitrosomethylethylamine (NMEA)	C ₃ H ₈ N ₂ O	88	Liver, lung, esophagus tumors in rats; liver tumors in hamsters		
N-nitrosodiethylamine (NDEA)	C ₄ H ₁₀ N ₂ O	102	Liver, esophagus, nasal cavity, kidney, forestomach, lung, and larynx tumors in rats; hamsters; guinea pgs; parakeets; and monkey		
N-nitrosopyrrolidine (NPyr)	C ₄ H ₈ N ₂ O	100	Liver tumors in rats; lung tumors in mice; trachea tumors in hamsters		
N-nitrosopiperidine (NPip)	C ₅ H ₁₀ N ₂ O	114	Liver, esophagus, nasal cavity tumors in rats; liver, forestomach, esophagus tumors in mice; trachea tumors in hamsters		
N-nitrosomorpholine (NMor)	C ₄ H ₈ N ₂ O ₂	116	Liver, nasal cavity tumors in rats; liver tumors in mice; trachea tumors in hamsters		
N-nitroso- n-dipropylamine (NDPA)	C ₆ H1 ₄ N ₂ O	130	Liver and lung tumors in rats		
nitrosodi- n-butylamine DBA)	C ₈ H ₁₈ N ₂ O	158	Wate Queto Centro		

	Parameters	s for the A	Analysis of Nit	rosamines		28
segment (min)	nitrosamines	retention time (min)	collision-induced dissociation (volt)	parent ion (<i>m</i> / <i>z</i>)	quantification ion (m/z)	
0-11	Filament/ multiplier delay	-	-	-	-	
11-13	NDMA	12.1	0.45	75	44, 47, 58	
	NDMA-d ₆	12.1	0.43	81	50	
13-16	NDEA	14.7	0.40	103	75	
16-17.6	NDPA-d ₁₄	17.4	0.40	145	97	
	NDPA	17.5	0.40	131	89	
17.6-18.5	NMor	17.8	0.42	117	86	ater ality

SS procedure ^a		IS procedure ^b		
analyte	average accuracy	range	average recovery	range (%)
	(%) (RSD %)	(%)	(%) (RSD %)	
NDMA-d ₆	-	-	109.8 (10.1)	83-118
NDMA	99.7 (9.3)	92-110	99.2 (7.5)	95-107
NDEA	99.4 (3.3)	101-108	97.6 (14.7)	83-112
NDPA	101.3 (15.9)	92-120	96.8 (4.4)	93-101
NMor	106.3 (9.5)	99-122	96.5 (11.6)	84-106

19

Anabaena: Cell Rupture 😂				
Anabaena Conc., cells/mL	Initial Chlorine Conc., mg/L	Reaction Time, min	Cell Integrity, %	
60,000	1	1	19	
	2	1	10	
3,200,000	2	2	65	
For Microcystis	3	2	45	
	4	2	3	
3,300,000	1	1	25	
	2	1	18 Water Quality	
	4	1	9 Centre	

28

