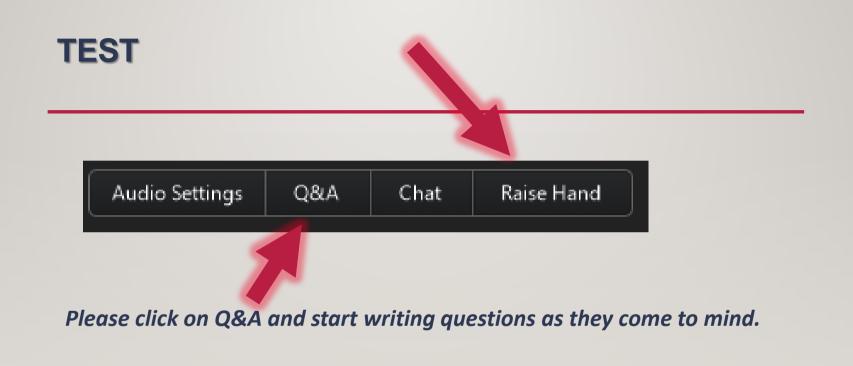


BEGINNING SOON: 2pm Sydney Time

WEBINAR:

Water Modelling using HEC-RAS: ID and 2D

Presented by Krey Price, Mark Forest, Robert Keller


CHAIR

Trevor Pillar,

National Partnerships Manager,

UP COMING HEC-RAS TRAINING COURSES:

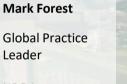
- Date: Monday 11th Friday 15th September, 2017
 - Attend any or all days
- Location: Brisbane
- Presenters: Robert Keller, Krey Price, Mark Forest
- **Register**: <u>http://www.icewarm.com.au/australian-water-</u> school/short-courses/course/5th-hec-ras-water-modelling/

AGENDA

• Format:

- 25 mins: Presentations:
 - RAS Mapper and GIS Interfacing (Krey Price)
 - Subgrid Terrain Detail (Mark Forest)
 - Hydraulic Structures (Bob Keller)
- 25 mins: Q&A open to all
- Recording- will be sent to all
- Feedback
 - 1 minute after Webinar
 - All comments welcome- helps shape future webinars

Today's Greenad



Today's Presenters

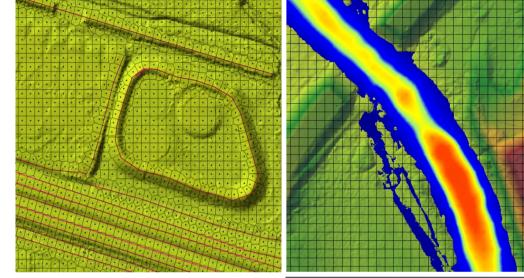
HOR

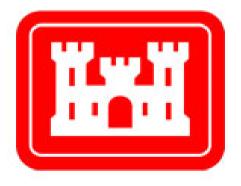
Dr. Robert Keller Honorary Associate Professor Monash University

Krey Price

Director

Surface Water Solutions


Surface Water



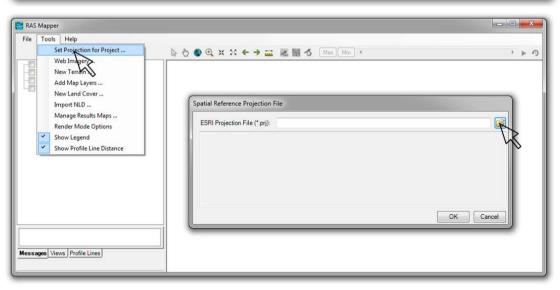
What is HEC-RAS 5.0?

- 2-dimensional Hydrodynamic Flow Routing
- Similar to the use of a Storage Area
- Linked 1D/2D Capability
- Independent 2D Domain for Overbank or Channel
- Full Saint Venant or Diffusion Wave Equation Solution Options
- Implicit Finite Volume Solution Algorithm
- 1D and 2D Coupled Solution Algorithm
- Unstructured or Structured Computational Meshes with Variable Sizes in Domain
- Detailed Hydraulic Table Properties for Computational Cells and Cell Faces
- Multi-Processor Based Solution Algorithm
- 64 Bit and 32 Bit Computational Engines

US Army Corps of Engineers Typologie Engineers

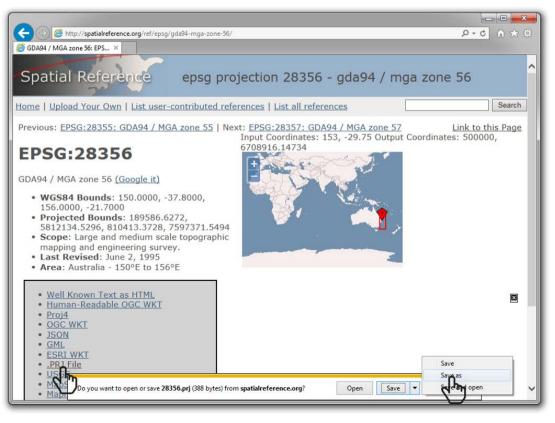
HEC-RAS River Analysis System

2D Modeling User's Manual Version 5.0 February 2016 Agenetic Ir Note Fidewa Districtor University



Water School

File Edit Rur	n View Options GIS To	ols Help			
	<u>x→</u> <u>x</u> + <u>x</u>				
, ojecti i	WODA Tutorial Model Brisbane	River	eVMSC-RAS\Brisbane\Brisbane	HECRAS.prj	C
lan: l					
eometry:					
teady Flow:					
Insteady Flow:			1		SI Units



Australian Water School

RAS Mapper

National Location Information Digital Elevation Data

Our Capabilities

Data / Spatial Applications

Digital Elevation Data

National Elevation Data Framework

National Elevation Data Framework (NEDF) and Urban Digital Elevation Model (DEM) Project Data Contributors

Built Environment and Exposure

National Surface Water Information

Topographic Information

Dimensions

Landforms

Contents

National Elevation Data Framework (NEDF)

Packaged data

· Related Information

Australia's future safety, prosperity and sustainability depends on making informed policy and investment decisions that meet the needs of today, and the decades ahead. Digital elevation data which describes Australia's landforms and seabed is crucial for addressing issues relating to the impacts of climate change, disaster management, water security, environmental management, urban planning and infrastructure design. Geoscience Australia is working collaboratively across all levels of government, industry and academia to ensure decision makers, investors and communities have access to the best available elevation data to meet local, regional and national needs.

National Elevation Data Framework (NEDF)

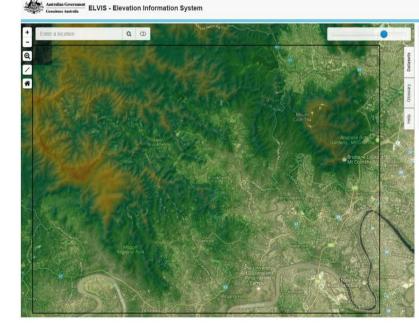
ELVIS (Elevation Information System)

Ensuring dictage makers, investors and the community have access to the best available elevation data descubing Australia's landforms and sea bed to address the needs of today and the decades the needs of today and the decades

Water School

RAS Mapper

Amstralian Government Geneticity Amstralian ELVIS - Elevation Information System


Surface Water Solutions

Water School

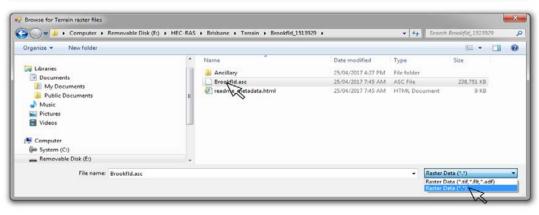
RAS Mapper

S metre Digital Elevation Model (DEM) Output Format Let ASCII Grid Let ASCII Grid

▲ Download wizard

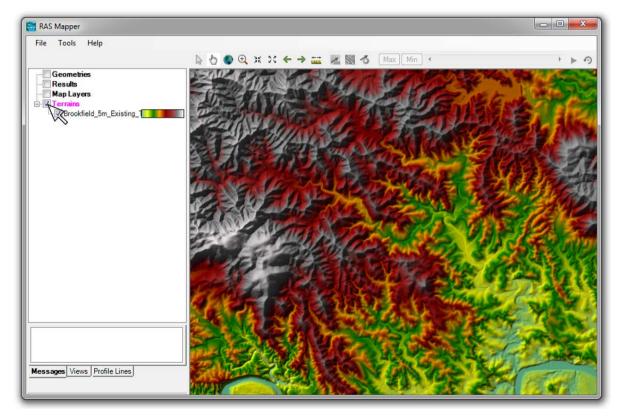
 Mapinfo Vertical Mapper Grid (NGrid) - NGrid is a binary raster format with header information. For each raster, there is only a single feature returned, since this feature will contain the entire raster. A single feature is stored in a single file, with header information in an associated Mapinfo TAB file.

Select what coordinate system or projection you would like. If in doubt select WGS84. Not all projections cover all of Australia. If the area you select is not covered by a particular projection then the option to download in that projection will not be available.



Water School

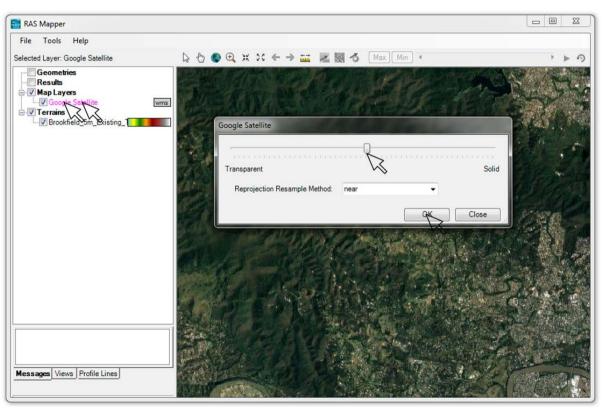
RAS Mapper		. • ×
File Tools Help	b 0 0 x x ← → m Z 3 4 Max Min <	· ▶ •9
Geometries Results Map Layers Create a new terrain Add existing terrain	New Terrain Layer Set SRS Input Terrain Files Filename Projection Cell Size Rounding Info	
Messages Views Profile Lines	Cuput Terrain File Cuput Terrain File Rounding (Precision): 1/128 Filename: e.\HEC-RAS\Brisbane\Terrain\Terrain.hdf Create Cancel Create Cancel	

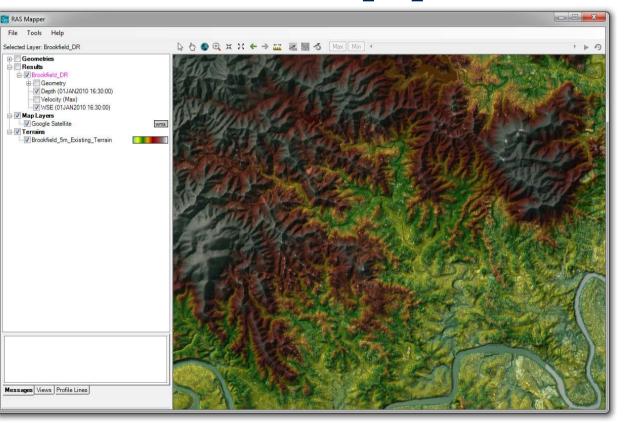


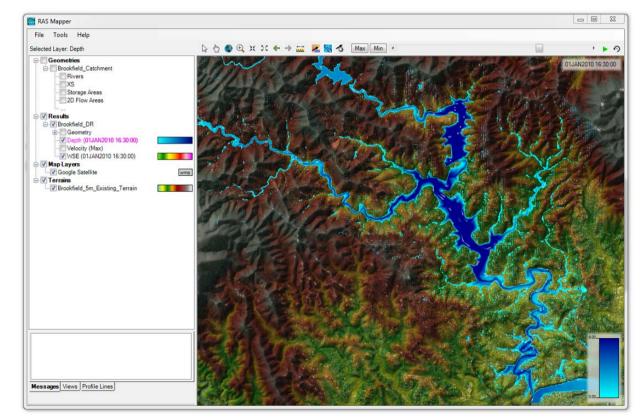
Australian Water School

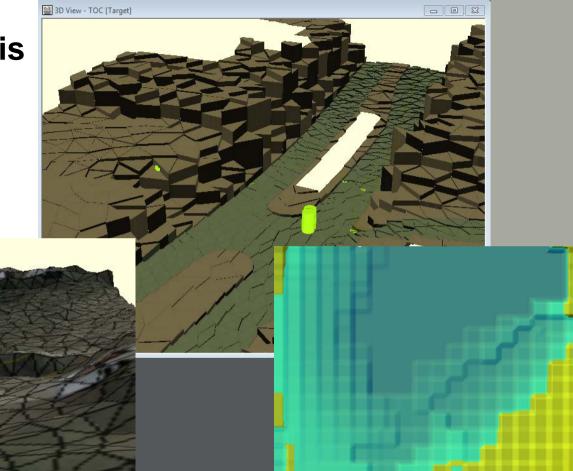
Australian Water School

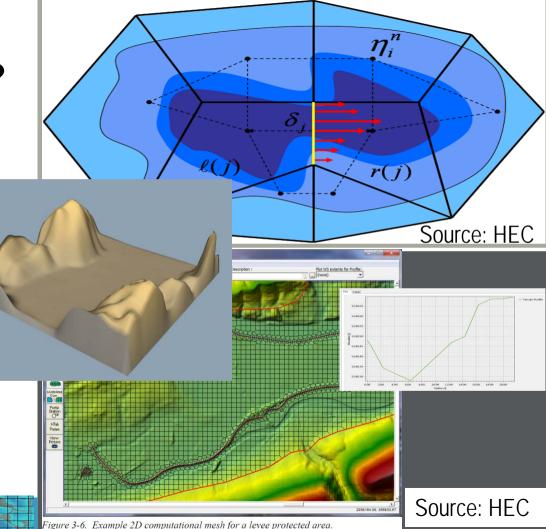
Mapper		Select WMS image server
Tools Help	0	ArcGIS Ocean Basemap
> 0 @ X X ← → Ⅲ	0	ArcGIS USA Topo Maps
Results	0	ArcGIS World Imagery
Mar Add map data layers	0	ArcGIS World Physical Map
Add Web Imagery layer		ArcGIS World Shaded Relief
Add new Land gover layer	0	ArcGIS World Street Map
Add existing Lan Cover layer	0	ArcGIS World Terrain Base
	0	ArcGIS World Topo Map
		Bing Satellite
		Google Hybrid
Stores and the stores of		Google Map
San Provide Start		Google Satellite
Star And Alle		Google Terrain Streets Water
and the state of the		Google Terrain
		MapQuestOpenAerial
		MapQuestOpenStreets
		NASA USDA NAIP Infared
		Open Street Maps
		Quadsheets
		USGS Orthoimagery



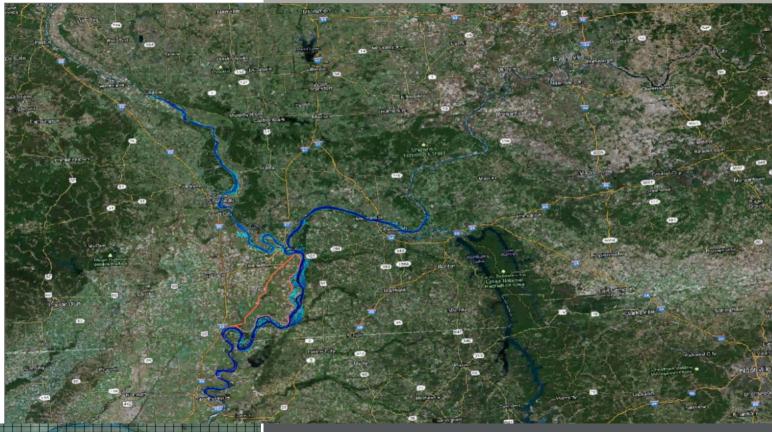


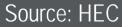




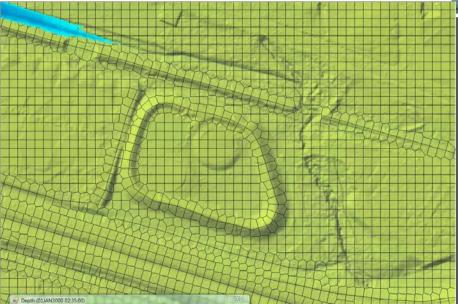

Sub-Grid Level Detail is Important

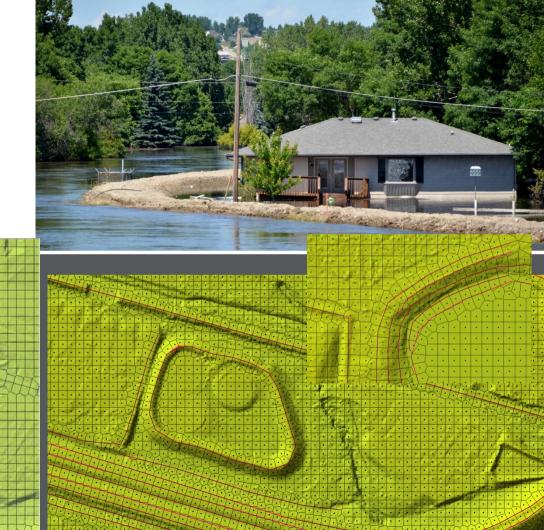
- Most 2D Software Packages Simplify the Terrain
- Simplified terrain requires smaller grids

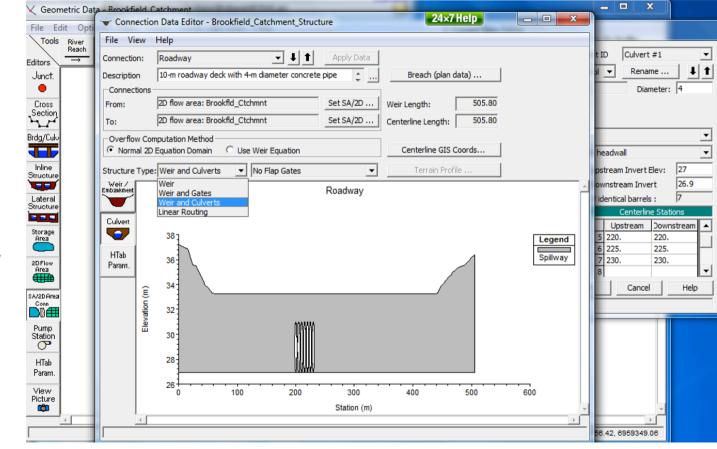

How is RAS Different?


- Computational Mesh with Sub-Grid Terrain Data (Full Terrain Detail is Utilised)
- Gridding Process Defines Hydraulic Property Tables
 - Elev-Wetted Perimeter (Face)
 - Elev-Area (Face)
 - Roughness (Face)
 - 。 Elev-Volume (Cell)
- Cell Face is a Detailed Cross Section
- Able to Capture Complex Hydrodynamics

Mississippi/Ohio River Flooding May 2011 – Forced Levee Breach


- Installed over 100 Temporary Gages to Capture the Event
- Used as Model Validation

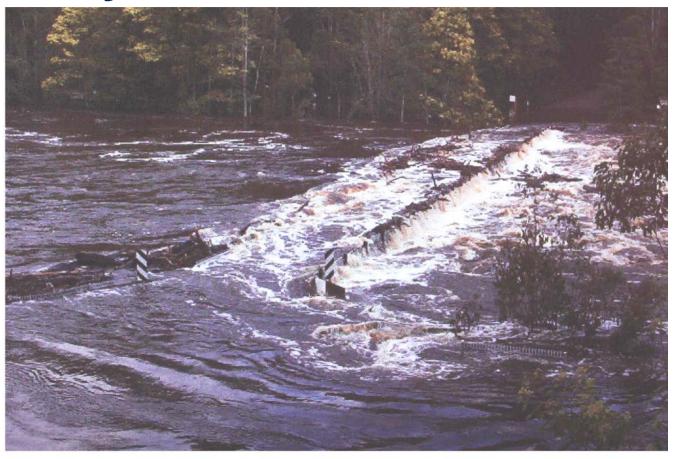



Adding Breaklines to Capture Linear Features

 Breaklines allow user defined grid boundaries to define linear features and gridding process

Australian Water School

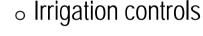
- Modeling hydraulic structures in RAS 2D very limited
- Some options for adding a bridge
- Eg:
 - Simply modify the terrain to include the bridge embankments, piers, and abutments
 - <u>Advantages</u>:
 - Easy to set up for existing bridges that are included as part of the terrain
 - Disadvantages:
 - Requires manually editing your terrain if you want to model a proposed bridge.
 - Can only simulate low flow through a bridge (can't impact the bridge deck).
 - Can't simulate complex-shaped piers.


Australian Water School

- Alternatively:
 - Use a SA/2D Area Connection with a culvert (or culverts) useful for wider bridges with relatively small openings when the bridge deck is impacted during the flood - spacing between box culverts simulates the piers.
 - Advantages:
 - Can simulate low flow <u>and</u> high flow conditions (i.e. bridge overtopping).
 - Disadvantages:
 - Uses culvert equations to model a bridge.
 - May not be able to get the culvert shape to perfectly match the bridge opening
 - Requires calibration
- NOTE BRIDGE SCOUR ISSUE



Solution



- If scour is an issue, must use 1-D modeling
- Other Structures
 - o Irrigation controls
 - Pump stations
 - Many lateral structures
 - Etc etc

Water School

- Use 1-D modeling for proper structure simulation

Logistics for Q&A

1. Please click **Q&A** and type your question:

Audio Settings Q&A Chat Raise Hand

FC

Australian Water School

2. Please

2. Please click raise hand and ask a live question on screen.

ICE WaRM

Thanks for participating

REMINDER:

- FEEDBACK: complete short survey as you close this window.
- <u>RECORDING</u>: link will be emailed
- BRISBANE COURSE: 11 15 September- attend any or all days

• FREE WEBINARS:

- 25th May: Smart Water Grids: SA Water CEO Roch Cheroux
- 15th June: Hard-Rock Groundwater Recharge: Peter Dillon, Yogita Dashora
- 29th June: Next Generation Irrigation Management: Tim Hyde, Ivor Gaylard
- 20th July: Community Wastewater Reuse with HRAP: Howard Fallowfield
- <u>TWITTER:</u> **@ICE_WaRM_** keep up-to-date with ICE WaRM

Water School