

Advances in estimating dam breach parameters

Dr Monte Azmi – Discipline Lead Hydrology and Flooding (VIC) -SMEC

May 2024

We're redefining exceptional

Through our specialist expertise, we're challenging boundaries to deliver advanced infrastructure solutions.

Agenda

- Background
 - ✓ Main breaching components
 - ✓ Methods to estimate breaching parameters
- Recently developed empirical equations and modeling package
 - Data-Fusion based approach (Azmi & Thomson 2024 Natural Hazards) Azmi, M., Thomson, K. (2024) Dam breach parameters: from data-driven-based estimates to 2-dimensional modeling. Nat Hazards 120, 4423–4461
 - ✓ BREACHER modeling package (ForwardHydro) <u>https://forwardhydro.com.au/breach-hydro-product-1</u>
- Conclusion and recommendations

Background

Estimating dam breach parameters: currently a challenging exercise due to

- limited reliable recorded information/databases and
- complex relationships between different elements of a dam breach event;
- high uncertainties (±0.5 to ±1 order of magnitude)
- Public service is not sure about outcomes

Models	Complexity	Accuracy	User friendly	Need of details	Technical support	Modelling length	Purchase & licence	Other maters
Physical & Laboratory								Replicating topography and material Highest costs amongst methods
Computational Fluid Dynamics								Required plenty of reliable information (Geotech, structure and hydraulic) for calibration/validation
Machine Learning								Monte Carlo (e.g. software package McBreach) Artificial Neural Networks, Gene Expression Programming
Empirical Equations (EEs)	Q	X	Š	8	X	X	8	Based on statistical and curve fitting methods Lowest accuracy amongst methods
Poor	NA		Exc	ellent				

Background

- Main breaching parameters
 - Failure time in hr (T_f), "breach formation time", time from the onset of formation to the full completion stage
 - Final breach average width (B_{ave}): final breach top and bottom widths along the dam crest
 - Breaching peak outflow (Q_{br out}): the peak of discharge from breached section
- > Empirical Equations (EEs) challenges & shortcomings:
 - Limited data for calibration-validation stages, (from 40 to 180 cases depending on the study)
 - Recorded data used mostly for small dams with height <15m,
 - Failure mode (overtopping or piping)
 - Dam types (rock fill, core wall, homogenous ...)
 - Geotechnical characteristics (i.e. erodibility, additional safety components)
 - High uncertainties in estimations

Motivation behind a new approach

- Low complexity & low uncertainty: Accuracy of machine learning with simplicity of empirical equations
- "Objective" framework: Regardless of experience, practitioners would be able to easily follow steps (at least for initial assessments)

Data Fusion Approach

If a situation or phenomenon is either complex or multiple aspects are directly or indirectly impacting it, attempt to understand it by a single element or method, would highly likely lead to insufficient or incorrect comprehension.

Proposed Framework – Parameters Estimates

Data Gathering Historical data: 175 cases from four documents	Filling Missing data: digging into the sources, similar cases		Initial selection of breaching param	of EEs: neters	Filtering hig outlier case	gh uncertain cases : s based on +50% EEs	Subgroupi G1 & G2:	ng Cases Q _{obs out;} G3: T _{f obs} G4: B _{ave obs}
Best Empirical Equation	ons (EEs) Selectio	on						
Dendrogram:Factor Analysis:EEs outcomes vs observed dataScree test, Eigenvalues> variation of the databa			alysis: Eigenvalues>1 tes of the database)	Stepwise regression:test (To sufficiently cover the)"probability of F test", "collinearity diagnosis" "forward selection & backward elimination algorithm"			diagnosis" "forward Igorithm"	
Linear & Nonlinear (polynomial) regressions between selected EEs vs breaching observations								
Fitting Algorithm:Performance Criteria:Levenberg-Marquardt (LM)Magnitude: RMSE (extremalgorithm (Gavin 2019)Association: NSE (extrement		t eria: E (extreme) , MAE ((extreme) , R ² (ave	(average) rage) , SR (avera	age)	Cross Validation Appr Iterations: +100k 80% training, 20% vali	oach: dation	Avoid Overfitting: Simple models Cross validation approach	
New Equations are called "Data Fusion Based Models" DFM								
Outcomes Assessments (individual selected EEs vs DFMs) Training & Test stages Entire group data set			DFMs) U B	Jncertainties As Based on entire Magnitude base	ssessments +100k iteratio d evaluation	n of test stage	Ultimate Equ DFM-L = f (se DFM-NL = g (aations for each subgroups (1G to G4) lected EEs) selected EEs)
							S	JURBANA

Member of the Surbana Jurong Group

Ultimate DMF Equations

DFM models	Breaching	Equation *
	Parameters	
DFM-L G1: Q		$Q = 1.23 F_{16} - 0.84 H_{14} + 0.26 XZ_9$
	G2: Q	$Q = -1.05 F_{95} + 2.3 H_{14} + 0.3 XZ_9$
	G3: FT	$FT = 3.27 F_{16} - 2.05 F_{95} + 0.25 XZ_9$
	G4: FBAW	$FBAW = 0.92 Z_{20} - 0.58 F_{95} + 1.06 XZ_9$
DFM-NL	G1: Q	$Q = 1.19 F_{16}^{0.97} - 0.81 H_{14}^{0.74} + 1.64 XZ_9^{0.8}$
	G2: Q	$Q = -0.81 F_{95}^{0.97} + 1.8 H_{14}^{1.02} + 0.71 XZ_9^{0.93}$
	G3: FT	$FT = 3.14 F_{16}^{1.03} - 7.65 F_{95}^{0.35} + 4.8 XZ_9^{0.15}$
	G4: FBAW	$FBAW = 0.72 Z_{20}^{1.13} - 0.88 F_{95}^{0.96} + 0.74 XZ_{9}^{1.07}$

G1: peak outflow for group #1; G2: peak outflow for group #2; G3: FT - failure time; G4: FBAW - final breach average width;

DFM: proposed data fusion-based model; F95 and F16 are empirical equations referenced in (Froehlich 1995) and (Froehlich 2016b)

respectively; H14 is empirical equation referenced in (Hooshyaripor et al. 2014); XZ9 empirical equation referenced in (Xu and

Zhang 2009); Z20 empirical equation referenced in (Zhong et al. 2020).

Performance Criteria Histograms for Cross-Validation Approach

Nonlinear Equation - Root-Mean-Square Error (RMSE)

Nonlinear Equation - Spearman's Rank Correlation Coefficient (MAE)

ar Equation - Mean Absolute Error (MAE)

100

16000

DFM_NL- G1 (Q outflow with Group 1) Test Stage

Uncertainties for entire cross-validation 100k iterations

 $E\% = 100 \times \frac{X_m - X_O}{X_O},$ where X_{Ω} is observed value and X_m is an estimated value

Positive error percentages show overestimations and negative values present underestimations.

Estimate peak outflow in the worstcase scenario with <0.3 orders of magnitude (±300%), outperforming FFs in literature

DFM for nonlinear equation (DFM NL)

Group#1 - POG1

Uncertainties based on estimates' magnitudes

Breaching Parameters	Categories of Breaching Parameters	Equations	Max range of Error%		
G1	0-1000	$E = 0.00006 \times Q + 0.1494$; (~15% constant overestimation)	-82% to 134%		
Q (m ³ /s)	1000-10,000	$E = -0.00003 \times Q + 0.3442$			
	10,000-70,000	$E = -0.0000003 \times Q + 0.0157$; ($\approx 1.6\%$ constant overestimation)			
G2	0-1000	$E = 0.0004 \times Q + 0.0601$			
Q(m ³ /s)	1000-10,000	$E = 0.000006 \times Q + 0.2435$; (\approx 24% constant overestimation)			
	10,000-90,000	$E = -0.00004 \times Q + 2.8574$			
G3	0-1	$E = 0.644 \times FT - 0.5406$	-91% to 110%		
FT (hr)	1-8	$E = -0.0302 \times FT - 0.0049$			
G4	Entire range $E = 0.0009 \times FBAW + 0.3186$		-76% to 890%		
FBAW (m) (0-350)					

SMEC SURBANA Member of the Surbana Jurong Group

Group#2 - POG2

100%

00%

80%

70%

60%

50%

40%

30%

20%

10%

n%

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

TTTTT

80

Framework: from breaching estimates to 2-dimensional model outcomes

- i. Estimating Breaching Parameters by DFMs
- ii. Calculating Confidence Intervals (magnitude-based uncertainty method Azmi & Thomson 2024)
- iii. Breach weir coefficient (USACE (2014) and HEC-RAS (2016), Lee et al (2019)) (usually between 1.2-1.8)
- iv. Determining Breach progression ("Linear" or "Sin Wave")
- v. Breaching side slope of 0 to 1 (USACE 2014)
- vi. If no additional geotechnical/hydraulic information, the bottom level of breaching is set as the downstream toe level of the dam ($H_d=H_s$)
- vii. The hydraulic model (e.g. HEC-RAS or TUFLOW) will be run, and the outflow peak will be derived.
- viii. Assess breaching outflow peak:
 - > Within the confidence interval range? Yes, 2-dimensional modeling outcome is acceptable,
 - > Within the confidence interval range? No, alterations on FBAW, FT, and weir coefficients are required

The process of iteration will continue till all breaching parameters including breach weir coefficient are within the desirable range

Case Studies

Dam		Breach Parameters Estimates by DFM_NL of G1				
Name	Dam Data in Australia	FT (hr)	FBAW (m)	Outflow (m ³ /s)		
#1	Zoned earthfill (ZD) Top Embankment=165.65mAHD Embankment Height= 9m DCF volume (ML)=240 Average embankment width=23.47m	0.66 with 12% underest. 0.66-0.75	28 with 34% overest. 21-28	390 with 17% overest. 333-390		
	Top of embankment length=440m					
#2	Concrete face rockfill (FD) Top Embankment=67.09mAHD Embankment Height= 13.14m DCF volume (ML)=1660	0.57 with 17% underest.	49 with 36% overest.	1793 with 29% overest.		
	Average embankment width=19m Top of embankment length=305m	0.57-0.69	36-49	1390-1793		
#3	Earthfill (HD) Top Embankment=63.5mAHD Embankment Height= 25.5m DCF volume (ML)=3920	0.50 with 22% underest.	78 with 39% overest.	4435 with 21% overest.		
	Average embankment width=66.25m Top of embankment length=450m	0.50-0.64	56-78	3666-4435		
#4	Earthfill with clay core (CD) Top Embankment=61mAHD Embankment Height= 25m DCF volume (ML)=8000	0.51 with 21% underest.	91 with 40% overest.	5585 with 18% overest.		
	Average embankment width=77.5m Top of embankment length=348m	0.51-0.65	65-91	4733-5585		

Case Studies

Dam		Breach Parameters Estimates by DFM_NL of G1			Two-dimensional ultimate values			
Name	Dam Data in Australia	FT (hr)	FBAW (m)	Outflow (m ³ /s)	FT (hr)	FBAW (m)	Weir coeff	Outflow (m ³ /s)
#1	Zoned earthfill (ZD) Top Embankment=165.65mAHD Embankment Height= 9m DCF volume (ML)=240 Average embankment width=23.47m Top of embankment length=440m	0.66 with 12% underest. 0.66-0.75	28 with 34% overest. 21-28	390 with 17% overest. 333-390	0.66	28	1.44	339
#2	Concrete face rockfill (FD) Top Embankment=67.09mAHD Embankment Height= 13.14m DCF volume (ML)=1660 Average embankment width=19m Top of embankment length=305m	0.57 with 17% underest. 0.57-0.69	49 with 36% overest. 36-49	1793 with 29% overest. 1390-1793	0.57	49	1.44	1507
#3	Earthfill (HD) Top Embankment=63.5mAHD Embankment Height= 25.5m DCF volume (ML)=3920 Average embankment width=66.25m Top of embankment length=450m	0.50 with 22% underest. 0.50-0.64	78 with 39% overest. 56-78	4435 with 21% overest. 3666-4435	0.64	56	1.30	4431
#4	Earthfill with clay core (CD) Top Embankment=61mAHD Embankment Height= 25m DCF volume (ML)=8000 Average embankment width=77.5m Top of embankment length=348m	0.51 with 21% underest. 0.51-0.65	91 with 40% overest. 65-91	5585 with 18% overest. 4733-5585	0.65	65	1.40	5520

Breach Hydro

A product of Forward Hydro Pty Ltd

Closed beta (Version 2024-01-beta.01)

BREACHER is modeling package to:

- Allowing for rapid modelling of thousands of runs in a short duration (~0.05s per run)
- Calculate breaching parameters based on the most common and recently introduced empirical equations
- Investigate through historical database to select the closest cases
- Using water balance to calculate water level at each time step
- Using hydraulic calculation to calculate failure status (width/height of failure)

Operation modes:

- Comprehensive: you will determine plausible ranges for your failure and model will run for all possible combinations leading to probabilistic distribution of outcomes
- Manual: User has reached to a certain values to run model for extracting failure hydrographs

Breach Hydro

Batch file run

📄 Ru	n_Breacher.bat 🗵						
1	BEM Set the below link to the breacher exe						
	Set Breacher="C:\BREACHER\2024_01_beta 01\breacher eve"						
4	Set Breacher - C. (BREACHER (2024-01-Deca.01) Dreacher.exe						
3							
4	REM Change the below link to the example breacher control file						
5	set bcf="S:\EXAMPLE FOLDER\Comprehens	ive Example.pv"					
7	REM The following line runs breacher	with the control file					
8	Breacher% %bcf%						
	2 Description of the set						
8	*Breacher* *DCI*						
~							
C	ntrol commands						
		1					
😸 Large_D	am_Cressbrook.py 🖸	1					
1	# SIMULATION CONTROL COMMANDS						
2	<pre>Project_Name = "Cressbrook"</pre>						
3	Failure_Type = "SDF"	# "SDF" for sunny day failure or "FFS" for flood failure					
4	Timestep = 10	# seconds					
5	Start_Time = 0	# hours					
6	End_Time = 2	# hours					
7	Calc Precision = 3 # decimals solved						
8	Breach Mode = "Comprehensive" # "Com	prehensive" to calculate historical dams or literature, "M					
9	Breach_Output = "Summary"	# "Summary" to only write summary file, "Detailed" output					
10	Total_Simulations = 10000	# Number of simulations to run, useful for probabilitic m					
11	#						
12	# INPUT BC DBASE	8					
13	BC_Inflow = "inflow.csv"	# dam inflow csv					
14	inflow_name = "Inflow"	<pre># inflow column in the dam inflow csv</pre>					
15	BC_Elev_Storage = "elev_storage.csv"	<pre># dam elevation-storage csv, storage is in 10^3 m3</pre>					
16	<pre>BC_Elev_Outflow = "elev_outflow.csv"</pre>	# dam elevation-outflow (ie spillway rating curve) csv					
17	<pre>BC_Breach_Progression = "breach_progression.csv"</pre>	# optional custom breach progression curve (ie linear, si					
18	BC_Flow_Tailwater = "None"	<pre># "flow_tailwater.csv" or "None"</pre>					
19	#						
20	# BREACH PARAMETERS						
21	Top_of_dam = 290.26	# Top of dam (RL)					
22	Breach_Time = [0.65, 2.96]	<pre># breach time in hours</pre>					
23	Initial Storage = 280.26	<pre># initial storage elevation at the dam</pre>					
24	Failure_WSL = 280.26	<pre># water surface level for failure commencement</pre>					
25	Failure_Elev = [276, 277]	<pre># elevation for failure commencement[231.26, 280.26]</pre>					
26	Breach Base = 231.26	# elevation at base of breach 231.26					
27	Side Slope = 0.4	# H:1V					
28	Breach Bot Width = [85, 160]	# breach bottom with in meters [85, 160] 101 replicates zhono					
29	Weir $Cd = [1.1, 1.8]$	# weir coefficient of discharge for the breach					
30	Orifice Cd = [0.4, 0.6]	# orifice coefficient of discharge for the bre					

 32
 # COMPREHENSIVE PARAMETERS - If "Comprehensive" is turned on in Breach_Mode

 33
 Dam_Crest_Width = 7
 # Dam crest width

 34
 Z1 = 0.444
 # Slope of US dam face Z1 (H:V)

 35
 Z2 = 0.444
 # Slope of DS dam face Z2 (H:V)

 36
 Dam_Type = "Homogeneous"
 # Options are "Core wall", "Concrete_Faced", "Zoned_Fill"

 37
 Dam_Erodibility = "Medium"
 # Options are "Low", "Medium" or "High"

SURBANA JURONG

Breach Hydro Validation with HEC-RAS

BREACHER has been validated to four HEC-RAS models of real dams, a total of 24 different dam breach scenarios

Breach Hydro

Probabilistic Tools (BREACHER-Post): GUI to allow for statistical analyses

Conclusion

Data Fusion Approach

- > This approach was introduced to improve the reliability and accuracy of EE's estimates
- This method presents an objective methodology where proposed EE's can be used to generate peak flows from hydraulic models consistent with the literature and historical dam failure datasets
- > Uncertainties still remain within the DFM equations, while a substantial improvement occurred
- > DFM equations along with 2d hydraulic modelling have shown substantial improvements

BREACHER

- Breach Hydro (BREACHER) streamlines the EEs (particularly DFMs) and hydraulic modelling
- Hydrodynamic modelling has been replaced by water balance modelling to increase the number of scenarios the practitioner can test

Conclusion

A defensible dam break assessment:

- > Understanding a feasible/plausible parameters' range (safety dams' components, geotechnical components etc)
- > Looking for a referenced historical dam failure of similar characteristics to the site (may not be always available)
- Undertaking a hydraulic (hydrodynamic or water balance) assessment for a range of parameters (breaching and hydraulic) to understand their impacts
- Performing sensitivity (data) analysis on the model outcomes to understand impacts of parameters (probabilistic post processing)

The modelling can never be fully precise, but following these steps are to ultimately reduce uncertainties.

