

Hydraulic Model Calibration to Historical Events

Chris Huxley

Overview

- 1. Why is flood model calibration important?
- 2. Data input considerations
 - Calibration data types
 - Calibration data accuracy
 - Model input quality control
- 3. Model design
 - User decisions impacting calibration accuracy
 - Case study examples
- 4. Model calibration reporting
 - Types and common summary statistics

Why is Model Calibration Important?

Agencies commissioning projects and modellers building models have a duty of care to end users (the community) that flood modelling is fit for purpose

Why is Model Calibration Important?

Flood model results can be incredibly convincing!

Calibration is the only true way to verify that the models we develop are an accurate representation of the real world situation

How wrong is your flood model? www.tuflow.com/library/webinars

Calibration Workflow

LinkedIn Discussion

"In 2013 Seqwater undertook a study of the Brisbane R which calibrated a suite of flood hydrologic models to 35 flood events dating from 1893. An objective method of determining model parameters was developed which included data quality, rating reliability, event magnitude, peak ratio, volume ratio and goodness of fit (Nash-Sutcliffe)... I've adopted this approach in 100s of models and 1000s of events throughout Australia.

It's easy to calibrate an event but far more difficult to calibrate a model."

Terry Malone (April 2020) – ex SEQ Water, Sun Water, BoM

Calibration of a model to multiple historic events is important to ensure a model can perform adequately for a range historic event magnitudes

LinkedIn Discussion Model Calibration Cost?

What is a reasonable cost for model calibration, relative to the total project budget during a standard flood study?

- 1. I don't have enough hands-on calibration experience to answer this question
- 2. 10%
- 3. 20%
- **4. 30%**

5. 40%

6. 50%

The upfront cost of calibration is far less than the potential follow-on costs/damages resulting from inaccurate uncalibrated modelling

Modelling

Potential Sources of Calibration Error

Systematic consideration of all potential sources of error is key to developing an accurate flood model

- 1. Data Issues
 - Recorded flood calibration data
 - Boundary condition inputs
 - Model geometry inputs
- 2. Model Build / User Error
 - Model input data interpretation
 - Model design

- 3. Software Assumptions / Applicability
 - Hydrology model
 - Hydraulic model

Calibration Data

Calibration Data Types

- Surveyed peak flood levels
 - Maximum height gauges
 - Water marks on buildings
 - Debris lines
- Continuous water level gauges
- Velocity gauging
- Anecdotal evidence
- Flood extent aerial imagery

Counties, Catchment Management Authorities, Councils, Cities take note!

- Collection and cataloging of these data immediately after an event is preferred
- Interagency coordination is beneficial

 Understand peak level reliability (1 = high, 2 = medium, 3 = low)

Identifying and Preserving High Water Mark Data (USGS, 2016)

Understand peak level reliability (1 = high, 2 = medium, 3 = low)

Debris snags (sometimes called "trash snags" or "flood trash" in urban settings) are formed when coarse debris collects on an obstruction in the water, such as a structure, pole, fence, guy wire, tree, boulder, or bush (fig. 23). Note that some piles may be taller than others, leading to a large amount of uncertainty regarding the actual peak water surface. Large pileups can result from deposition of new materials at different stages as the water recedes. Conversely, the pileups may also result from swift flow forcing new material on top of older material. When swift flow encounters obstructions, water may run up higher on the upstream side of the object and drawdown lower on the downstream side, as shown in figure 24. This can also cause coarse debris to pile up higher than the flood peak surface, so these piles should be assigned a suitably large uncertainty or remain unused.

Identifying and Preserving High Water Mark Data (USGS, 2016)

Understand peak level reliability (1 = high, 2 = medium, 3 = low)

Debris snags (sometimes called "trash snags" or "flood trash" in urban settings) are formed when coarse debris collects on an obstruction in the water, such as a structure, pole, fence, guy wire, tree, boulder, or bush (fig. 23). Note that some piles may be taller than others, leading to a large amount of uncertainty regarding the actual peak water surface. Large pileups can result from deposition of new materials at different stages as the water recedes. Conversely, the pileups may also result from swift flow forcing new material on top of older material. When swift flow encounters obstructions, water may run up higher on the upstream side of the object and drawdown lower on the downstream side, as shown in figure 24. This can also cause coarse debris to pile up higher than the flood peak surface, so these piles should be assigned a suitably large uncertainty or remain unused.

 Understand peak level reliability (1 = high, 2 = medium, 3 = low)

If surveying levels marked on a building from a past event, check the structure has not been raised since the flood!

Figure 5. A stain line on a wood door that has absorbed floodwater. Note the seed line below the stain line, indicating the true high-water elevation at this location and the amount that could be overestimated because of porous material wicking.

Identifying and Preserving High Water Mark Data (USGS, 2016)

Understand peak level reliability (1 = high, 2 = medium, 3 = low)

Mud line identification presents several pitfalls that can be avoided with proper awareness. The "Paria River, Arizona" narrative illustrates some of these pitfalls. High-velocity, high-sediment-load rivers can paint lines on structures such as bridge piers; however, the lines may generate misleading highwater marks because of waves, pileup, and drawdown generated by the structures themselves (fig. 22). Hydrographers should note the variability in mud-line elevations on a large structure, especially in the upstream to downstream direction, before determining if the mud lines should be used as high-water marks. If highly-variable mud lines must be used, recording the measured amount of variability is important, as described in the Evaluation section of this manual. For smaller obstructions where runup is evident on the upstream side and drawdown is evident on the downstream side, a mark can be assumed halfway between the two extremes.

As with wash lines, care should be taken with mud lines to watch for receding soil saturation that may masquerade as mud lines and underestimate the actual peak water surface.

Figure 21. A rapid-water mud line of a different color than the existing bed sediment. Photograph by Jon Mason.

Identifying and Preserving High Water Mark Data (USGS, 2016)

- Understand peak level reliability (1 = high, 2 = medium, 3 = low)
- Common sense check
 - Regional continuity
 - DEM verification

Is Direct Rainfall (Rain-on-Grid) Accurate? – Phillip Ryan www.tuflow.com/library/webinars

Calibration Data Preparation Water Level Gauges

- Confirm gauge datum (not AHD):
 - Inland gauges can use a local datum to offset base elevation

Calibration Data Preparation Water Level Gauges

• Confirm gauge datum (not AHD):

- Inland gauges can use a local datum to offset base elevation
- Coastal gauges can use Lowest Astronomical Tide (LAT) as datum for navigation purposes

Chart depth + tide level (LAT datum) = available depth for boat draft

Calibration Data Preparation Water Level Gauges

- Confirm gauge datum (not AHD):
 - Inland gauges can use a local datum to offset base elevation
 - Coastal gauges can use Lowest Astronomical Tide (LAT) as datum for navigation purposes
- Check gauge history
 - Location change?
 - Datum change?

Calibration Data Preparation Velocity Gauging

- Useful for derivation of rating curve for initial review of flow estimates from the hydrology model
- Warning: Don't assume the rating curves you're provided are correct. Check metadata
 - Upper limits of rating?
 - Range of uncertainty?

Calibration Data Preparation Gauge Rating Curve

- Be aware of hysteresis effects
- Multiple velocity gauging / flow calculation at different times during an event are a useful though rare calibration dataset for a hydraulic model

Model Inputs and **General Model Design** Considerations

Model Input Data Preparation Rainfall Data

- Use real recorded data. DO NOT use design event rainfall as an input for calibration!
- Verify recorded data quality before using
- Were all gauges operational for the whole event?
- Cumulative Rainfall check
- Compare daily / tip bucket totals

Which two gauges failed during this event?

Model Input Data Preparation Rainfall Data

- Use real recorded data. DO NOT use design event rainfall as an input for calibration!
- Verify recorded data quality before using
- Were all gauges operational for the whole event?
- Cumulative Rainfall check
- Compare daily / tip bucket totals

Confirm topography data accuracy by validation using secondary datasets

Common Airborne Laser Data (ALS or LIDAR) survey limitations

Poor ability to penetrate water

TUFLOW Thoughts on the quality of this data?

TUFLOW Hillshade symbology is useful for spotting ALS data errors

Bridge openings sometimes missing or misrepresented in LiDAR

Enforce ridge hydraulic controls using breaklines

Enforce ridge hydraulic controls using breaklines

If no survey data:

- Draw ridge breaklines manually (2d_zsh_empty)
- 2. Set line parameters:
 - 1. dz = sample interval
 - 2. Shape_width = inspection radius
 - 3. Shape Option = process option

UFLOW https://wiki.tuflow.com/index.php?title=ASC_to_ASC

Enforce ridge hydraulic controls using breaklines

If no survey data:

- Draw ridge breaklines manually (2d_zsh_empty)
- 2. Set line parameters:
 - 1. dz = sample interval
 - 2. Shape_width = inspection radius
 - 3. Shape Option = process option
- 3. Run ASC_to_ASC utility (*-brkline* function)

Layout	Sort by * ☐ Size all columns to fit Current view Show/hide	lide selected Options			
eanics (0:) > TUFLOW > Models > 2019_FMA_Challe	enge_Models > CH_4_CCreek > TUFLOW > model > grid		✓ Ŏ ,○ Search grid		
	Name	Date modified 11/0/0212.202 PM 11/0/0212.202 PM 13/0/0212.202 PM 13/0/0212.1252 PM 13/0/0221.202 PM 13/0/0221.202 PM 13/0/0201.202 PM 13/0/0201.202 PM 26/02/0219.1146 AM 26/02/0219.1146 AM	Type File folder DBF File Yest Document QRI File SHVF File Windows Batch File Application FLT File HDR File Test Document	500 516 116 116 116 116 116 552 10 1,07,184 40 168 118	
O:\TUFLOW\Models\2019_FMA_Challenge_Models\0 Hie Edit Search View Encoding Language Settings D D D D D D D	CH_4_CCreekiTUFLOW/model\gridUa2a.bat - Notepad++ Tools Macro Run Plugins Window ? 2 * * * * * * * * * * * * * * * * * * *				- 0
1 asc_to_asc_w64.exe	-check -brkline 2d_zsh	n_Ridge_002_L.shp (CCR_2011_1ft_a.	flt	
2					
Z					
Z					

TUFLOW <u>https://wiki.tuflow.com/index.php?title=ASC_to_ASC</u>

Enforce ridge hydraulic controls using breaklines

If no survey data:

- Draw ridge breaklines manually (2d_zsh_empty)
- 2. Set line parameters:
 - 1. dz = sample interval
 - 2. Shape_width = inspection radius
 - 3. Shape Option = process option
- 3. Run ASC_to_ASC utility (*-brkline* function)

JFLOW https://wiki.tuflow.com/index.php?title=ASC_to_ASC

Enforce ridge hydraulic controls using breaklines

large icons 🥽 Large i

Licons I Contei La eanics (O:) → TUFLOV

If no survey data:

- Draw ridge breaklines manually (2d_zsh_empty)
- 2. Set line parameters:
 - 1. dz = sample interval
 - 2. Shape_width = inspection radius
 - 3. Shape Option = process option
- 3. Run ASC_to_ASC utility (*-brkline* function)
- Add new files to TUFLOW model (*Read GIS Z Shape ==*)

ons Ell Medium icons Details put	÷ ∓ Sor	Add columns * File name extensions Size all columns to fit Current view Group by * Tele name extensions Hide n m Show/hide	elected Options			
> Models > 2019_FMA_Ch	allenge_M	odels > CH_4_CCreek > TUFLOW > model > grid		✓ Ŏ ,○ Search grid		
		Name	Date modified	Туре	Size	
	100	1 xf	13/04/2021 2:02 PM	File folder		
	*	2d_zsh_Ridge_002_brkline_L.dbf	13/04/2021 2:28 PM	DBF File	5 KB	
		2d_zsh_Ridge_302_brkline_L.prj	13/04/2021 2:27 PM	Text Document	1 KB	
	1	2d_zsh_Ridge_002_brkline_L.shp	13/04/2021 2:28 PM	SHP File	39 KB	
	\$	2d_zsh_Ridge_002_brkline_L.shx	13/04/2021 2:28 PM	SH00 File	1 KB	
		2d_zsh_Ridge_002_brkline_P.dbf	13/04/2021 2:28 PM	OBF File	150 KB	
		2d_zsh_Ridge_002_brkline_P.prj	13/04/2021 2:27 PM	Text Document	1 KB	
		2d_zsh_Ridge_002_brkline_P.shp	13/04/2021 2:28 PM	SHIP File	61 KB	
		2d_zsh_Ridge_002_brkline_P.shx	13/04/2021 2:28 PM	SHX File	18 KB	
		2d_zsh_Ridge_002_check_L.dbf	13/04/2021 2:28 PM	DBF File	1 KB	
		2d_zsh_Ridge_002_check_L.prj	13/04/2021 2:27 PM	Text Document	1 KB	
		2d_zsh_Ridge_002_check_L.shp	13/04/2021 2:27 PM	SHIP File	1 KB	
		2d_zsh_Ridge_002_check_L.shx	13/04/2021 2:27 PM	SHX File	1 KB	
		2d_zsh_Ridge_002_check_P.dbf	13/04/2021 2:28 PM	DBF File	98 KB	
		2d_zsh_Ridge_002_check_P.prj	13/04/2021 2:27 PM	Text Document	1 KB	
		2d_zsh_Ridge_002_check_P.shp	13/04/2021 2:28 PM	SHP File	61 KB	
		2d_zsh_Ridge_002_check_P.shx	13/04/2021 2:28 PM	SHX File	18 KB	
		2d_zsh_Ridge_002_check_R.dbf	13/04/2021 2/28 PM	DBF File	98 KB	
		2d_zsh_Ridge_002_check_R.prj	13/04/2021 2:27 PM	Text Document	1 KB	
		2d_zsh_Ridge_002_check_R.shp	13/04/2021 2:28 PM	SHP File	572 KB	
		2d_zsh_Ridge_002_check_R.shx	13/04/2021 2:28 PM	SHX File	18 KB	
		2d_zsh_Ridge_002_L.dbf	13/04/2021 2:20 PM	DBF File	5 KB	
		2d_zsh_Ridge_002_L.prj	13/04/2021 12:52 PM	Text Document	1 KB	
		2d_zsh_Ridge_002_L.qpj	13/04/2021 12:52 PM	QPJ File	1 KB	
		2d_zsh_Ridge_002_L.shp	13/04/2021 2:20 PM	SHP File	25 KB	
		2d_zsh_Ridge_002_L.shx	13/04/2021 2:20 PM	SHX File	1 KB	
		🖾 aZa.bat	13/04/2021 2:22 PM	Windows Batch File	1 KB	
		asc_to_asc_w64.exe	15/10/2020 10:54 AM	Application	5,522 KB	
		CCR_2011_1ft_a.fit	26/03/2019 11:48 AM	FLT File	1,671,894 KB	
		CCR_2011_1ft_a.hdr	26/03/2019 11:48 AM	HDR File	T KB	
		CCR_2011_1ft_a.prj	26/03/2019 11:48 AM	Text Document	1 KB	
		CCR_2011_1ft_a.stx	28/03/2019 6:38 AM	STX File	1 KB	
		hdf5_hidll.dll	13/04/2021 2:02 PM	Application extension	99 KB	
		A hdf5dll.dll	13/04/2021 2:02 PM	Application extension	2,131 KB	
		🗟 netcdf.dll	13/04/2021 2:02 PM	Application extension	1,141 KB	
		S stin.dll	13/04/2021 2-02 PM	Application extension	45 KB	

Model Input Data Preparation Landuse Data

<u>DO NOT</u> trust free online datasets without reviewing them carefully first!

Model Input Data Preparation Landuse Data

DO NOT trust free online datasets without reviewing them carefully first!

Model Input Data Preparation Landuse Data

Industry standard values: <u>https://wiki.tuflow.com/index.php?title=Industry_Modelling_Guidelines</u>

Model Input Data Preparation Other Major Geometry Inputs

TUFLOW QGIS Plugin - Pipe Integrity Tool

- Snapping check and correction
- Pipe direction
- Continuity

>13,000 pipes = QA Challenge

Model Input Data Preparation Model Cell Size Selection

Result Convergence Testing:

2D Cell Size Selection for Accurate Hydraulic Modelling www.tuflow.com/library/webinars

Model Input Data Preparation Site Visit / Meet and talk to the locals

Case Study Demonstration 1

USA Region 9 FMA Challenge 2 Overview

- Flood model calibration (1 event only)
- External inflows (provided)
- Landuse data
 - National Land Cover Database (provided)
 - Used data from aerial photography instead
- 5m DEM topography provided
 - Corrected data error at two upstream bridges
 - Added ridge breaklines
- 53 peak flood level marks (provided)

USA Region 9 FMA Challenge 2 Process Workflow

Calibration Activity	Modelling Task	Simulation Details
Step 1: Define Model Extent	Broadscale model simulation	100m resolution model 1 minute runtime
Step 2: Initial Model Input Corrections	Land use (Manning's n)Topography	
Step 3: Result Convergence Test for Cell size Assumptions	10m, 15m, 20m, 30m, 50m, 100m cell resolution simulations	<30m cell resolution is appropriate
Step 4: Calibration Refinement	30m resolution model	3 minute runtime 11 refinement iterations required
Step 5: Final Calibration Simulation	15m resolution model	20 minute runtime

USA Region 9 FMA Challenge 2 Model Correction Example

Impact of correcting bridge opening topography error

USA Region 9 FMA Challenge 2 Model Correction Example

USA Region 9 FMA Challenge 2 Model Correction Example

- 1. ABS (modelled recorded peak flood level)
- 2. Sort from smallest to largest
- 3. Assign % = (data count / max count)*100
- 4. Plot sorted data vs %

USA Region 9 FMA Challenge 2 Cell Size Selection Test

TUFLOW

USA Region 9 FMA Challenge 2 Cell Size Selection Test

TUFLOW

USA Region 9 FMA Challenge 2 Cell Size Selection Test

USA Region 9 FMA Challenge 2 Final Result

Modelled Peak Flood Level (m) 3.0000 6.0000 9.0000 12.0000 15.0000 Surveyed Flood Mark 0.0 Recorded Peak Level (m) 0.0 Modelled Peak Level (m)

Legend

0.0 Difference (m)

Modelled – Recorded Difference (m) -0.6 to -1.0 -0.3 to -0.6 -0.3 to 0.3 0.3 to 0.6 0.6 to 1.0

Case Study Demonstration 2

Lower Clarence Valley

- East coast of Australia
- 10,400 km² catchment
- Estimated 1% AEP (100 year) event flow of 19,000 m³/s or 670,000 ft³/s

Lower Clarence Valley TUFLOW Historic Event Calibration Modelling

Excellent flood model calibration examples

TUFLOW <u>https://flooddata.ses.nsw.gov.au/organization/clarence-valley-council/datasets</u>

Lower Clarence Valley TUFLOW Flood Model

Data courtesy of Clarence Valley Council

TUFLOW calibration to:

- 25 water level gauge locations in the study area
- 8 major flood events since 1967 (current catchment topography)
- Flood event velocity recordings
- Over 600 surveyed peak flood levels (2001, 2009 and 2013 flood events)

TUFLOW <u>https://flooddata.ses.nsw.gov.au/organization/clarence-valley-council/datasets</u>

Lower Clarence Valley TUFLOW Flood Model

Exercise

Use the 2001 and 2013 events to demonstrate the potential impact of possible model design mistakes / errors

Lower Clarence Valley TUFLOW Flood Model

- External Clarence River inflow
- External tributary inflows (7)
- River entrance (tide)
- Internal catchment rainfall

Lower Clarence Valley Result Sensitivity

2001 Event

Lower Clarence Valle Result Sensitivity

2001 Event Modelled – Record Peak Flood Level

Lower Clarence Valley Result Sensitivity

2013 Event

Brushgrove

Lower Clarence Valle Result Sensitivity

2013 Event Modelled – Record Peak Flood Level

Lower Clarence Valley TUFLOW Flood Model Calibration Tip

• **<u>DO NOT</u>** attempt to improve calibration by:

- Adjusting Manning's n outside established industry values
- Using hydrology loss values outside what is physically realistic
- Ask yourself:
 - What errors could be in your model?
 - What are the most significant hydraulic features in the project area?

Lower Clarence Valley LIDAR (ALS) Data + Bathymetry

LiDAR data rarely includes bathymetry data:

Bathymetry added

Lower Clarence Valley Result Sensitivity

2001 Event

Brushgrove

Lower Clarence Valley Result Sensitivity

2013 Event

Lower Clarence Valle Result Sensitivity

2001 Event Modelled – Record Peak Flood Level

Lower Clarence Valle Result Sensitivity

2013 Event Modelled – Record Peak Flood Level

Lower Clarence Valley LIDAR (ALS) Data + Bathymetry + Breakline Data

UFLOW

Add breaklines to enforce key topographic hydraulic controls

- Levees
- Raised road embankments
- Raised railway embankments
- Perched riverbanks
- Minor drainage channels (if not using SGS)

Lower Clarence Valley Result Sensitivity

2001 Event

Brushgrove

Lower Clarence Valley Result Sensitivity

2013 Event

Brushgrove

Lower Clarence Valle Result Sensitivity

2013 Event Modelled – Record Peak Flood Level

Calibration Reporting

Ccalibration Performance Reporting Peak Flood Mark Results

- Maps presenting results
- Summary graphs
 - Histogram
 - Recorded vs measured scatter
- Performance reporting statistics
 - Mean, standard deviation and R²

Exhaustive Real-World Example – Hydrology and Hydraulic Model Calibration Reports https://www.publications.qld.gov.au/dataset/brisbane-river-catchment-flood-study

Calibration Performance Reporting Water Level Gauge Recording

- Graph reporting calibration match to peak value and shape (rising and falling limb) are equally important
- Performance reporting statistics

Class	Peak Ratio	Volume Ratio	Nash Sutcliffe
Excellent	< ±10%	< ±15%	≥ ±0.95
Good	< ±15%	< ±25%	≥ ±0.90
Fair			≥ ±0.85
Poor	< ±50%	< ±50%	≥ ±0.50

Source: SEQ Water Values reported in the Brisbane River Catchment Flood Study Report

Other ref. https://tonyladson.wordpress.com/2019/08/20/model-performance-based-on-coefficient-of-efficiency/

Calibration Performance Reporting River Centreline Long-section

Doesn't accommodate for superelevation around river bends (1D mentality)

Calibration Performance Reporting Aerial Imagery Flood Extent

Profile Tool

- Low quality calibration dataset
- Event peak timing challenge
- Often coarse zoom comparison...
- Major flooding often extends to where high gradient topography starts...

Presentation Summary

- 1. Calibration is necessary to develop fit for purpose flood models
 - Future \$\$ savings (design costs and reduced unexpected flood damages)
- 2. Calibrate to multiple events is recommended
 - Consider event magnitude, data availability, event recency
- 3. Use a common sense approach to achieve a quality calibration result
 - Quality check data quality prior to use
 - Employ best practice model design/build principles
 - Use software that's suitable for the flood behaviour being modelled
- 4. Calibration Reporting
 - Necessary so future model users are aware of uncertainty

Modelling When Calibration Data is Scarce?

Webinar: Modelling when calibration data is scarce

What parameters and quality control tests should be adopted for uncalibrated hydraulic modelling?

What parameters and quality control tests should be used for an uncalibrated hydraulic model and understanding the model's uncertainty?

Date: Wednesday, 16 June 2021

Time: 1:00pm (Australia/Sydney; find your local time)

TUFLOW Webinars

https://www.tuflow.com/library/webinars/

Questions?

