

Whole of system simulation of catchment water quality treatment devices

Michael Barry Colin Roberts

Agenda Webinar Presentation Overview

Context

- Whole of catchment water quality simulation
- Simulation of pollutant treatment
- Historical setting and a current challenge
- Explore modern approaches through a real model application
 - Detailed simulation of dynamic pollutant treatment
- Key messages and wrap

Context Whole of Catchment Water Quality Simulation

What

- Simulation of the passage of water and pollutants through a catchment from source to receiving waterway
- Why
 - Understand volume and mass fluxes
 - To mitigate negative impacts of catchment change
- End goal (mostly)
 - Protection of receiving waters

Context Simulation of Treatment

What

- Simulation of the removal of pollutants through a catchment by existing or proposed interventions
 - Wetlands, swales, filter strips, bioretention etc
- Why
 - Optimise treatment catchment-wide reduction of mass fluxes
- End goal (mostly)
 - Most effective protection / rehabilitation of receiving waters

Context Historical Setting – Catchment Water Simulation

- Primary (not sole) typical approach has been
 - Lumped hydrology 'bucket model'
 - Subcatchment-wide averaging surface and subsurface
 - No explicit simulation of water hydraulics (depth, velocity) or travel pathways within a subcatchment
 - Daily or larger timestep
 - Subcatchments additive with lag to produce downstream volumetric timeseries

Context Historical Setting – Catchment Pollutant Simulation

- Primary (not sole) typical approach has been
 - Lumped pollutant models
 - 'End of pipe' event mean and dry weather concentrations
 - Multiplied at end of pipe with lumped hydrology: lumped flow x event mean concentration = ???
 - Daily or larger timestep
 - Subcatchments additive with lag to produced downstream mass timeseries

Context Historical Setting – Catchment Simulation

- Primary (not sole) typical approach benefits
 - Fast
 - Long term relative broadscale land use change simulations
- Primary (not sole) typical approach challenges
 - Loses on-ground connectivity between detail of hydraulics, water flow pathways and treatment intervention
 - Locations what water flows (with pollutants) where
 - Dynamic performance how does removal work under differing hydraulics?

Context Historical Setting – Catchment Simulation

- A current challenge is:
 - Attending to spatial and temporal detail of hydraulics and treatment
 - Connecting water movement to mass removal processes

- Where
 - Norman Creek catchment, Brisbane, Australia
 - 30 km² catchment area with ~150m relief
 - Highly modified inner city suburbs
 - Residential
 - Industrial/hospitals/schools
 - Open space and forested

- What (lots of choices!)
 - Sediment generated from roads
 - Motorway
 - Other roads
 - Removal of sediments through treatment
- Why
 - Roads are a major source of receiving waterway pollution
 - Sediment, heavy metals, hydrocarbons

- How
 - TUFLOW CATCH
 - Integrated catchment and receiving model
 - Explicit and linked simulation of 2D
 - Catchment surface and subsurface hydraulics
 - Receiving hydrodynamics
 - Pollutant generation, transport and treatment
 - No average or lumping assumptions

- Catchment model geometry (focus today)
 - 5m grid size scale of spatial resolution
 - 2 soil layers
- Hydraulic data all freely available
 - Digital elevation model
 - Gridded rainfall and evapotranspiration
 - Land use / cadastre / imperviousness
 - Key pipe networks

- Catchment model geometry (focus today)
 - 5m grid size scale of spatial resolution
 - 2 soil layers
- Sediment data experimental
 - Measured liberation rates
 - Different road types
 - Not averaged downstream concentrations

- Sediment generation and transport in TUFLOW CATCH
 - One sediment fraction for Motorway and one for all other roads
 - Track sediment release, transport and treatment from both sources independently
 - Hydraulics and pollutant export explicitly simulated

Whole of catchment water quality

- Sediment generation and transport in TUFLOW CATCH
 - Simulated one event for demonstration purposes
 - Multi-annual simulations for project applications
 - Added 3 new hypothetical treatment devices (wetlands)
 - Did not account for hydraulic throttling but easily added

Whole of catchment water quality

- Sediment removal in TUFLOW CATCH
 - 2D flow-concentration lookup table
 - Tracked pollutants from Motorway and other roads separately
 - Assess pollutant delivery to the creek
 - All wetlands were given the same lookup table

Pollutant Removal %		Concentration (mg/L)									
		1	10	20	30	40	50	60	80		
Flow Rate (m³/s)	0.1	50	55	60	65	70	75	80	90		
	1	50	55	65	65	70	75	80	90		
	2	40	45	55	55	60	65	70	80		
	3	30	35	45	45	50	55	60	70		
	4	20	25	35	35	40	45	50	60		
	5	10	20	25	25	30	35	40	50		
	10	0	5	10	20	25	30	35	40		

V

- The next slide presents animations of pollutants generated from:
 - Left panel: Motorway runoff only
 - Right panel: All other roads runoff only
- Note
 - · Very different pollutant distributions between motorway and other roads
 - They need to be explicitly resolved, and not lumped
 - Seamless connectivity from source to Brisbane River

- The next slide presents animations of pollutants generated from:
 - Motorway only:
 - Left panel: Untreated (device locations shown only as points of reference)
 - Right panel: Treatment interventions in place (devices are at locations shown)
- Note:
 - Initially similar concentrations (hydraulic conditions not conducive to removal)
 - Later lower concentrations on the right panel (hydraulic conditions conducive to removal)

Motorway Runoff – Three Treatment Devices

- The next slides are timeseries graphs reporting loading rates (kg/s) to Norman Creek
 - Graph 1: Motorway only
 - Graph 2: Other roads
 - In both graphs:
 - Blue line = untreated simulation result
 - Orange line = treated simulation result
- Note differences in removal due to hydraulic conditions

Motorway – Sediment Delivery to Norman Creek

Other Roads – Sediment Delivery to Norman Creek

- The next slides are timeseries of cumulative sediment loads (t) to Norman Creek
 - Graph 1: Motorway only
 - Graph 2: Other roads
 - In both graphs:
 - Blue line = untreated simulation result
 - Orange line = treated simulation result
- Note differences in removal due to hydraulic conditions

Other Roads – Sediment Delivery to Norman Creek

Whole of catchment water quality analysis

• Individual wetland performances, for different road sources

Road Scenario	Assessme	ent Result	Wetland 1	Wetland 2	Wetland 3	
	Cumulative	Entering	0.19	0.26	0.21	>
Motorway	(t)	Leaving	0.07	0.09	0.03	
	Treatment E	fficiency (%)	63	65	86	
	Cumulative	Entering	0.08	0.10	0.09	>
Other Roads	(t)	Leaving	0.02	0.03	0.03	
	Treatment E	fficiency (%)	75	70	67	

- Sediment loads from the motorway are double those of other roads, and travel along different pathways
 - Provides clear planning focus for treatment
- Different wetlands have different removal efficiencies due to different hydraulic regimes
 - Only able to discern due to explicit spatial and temporal resolution of hydraulics and pollutant export
 - Lumping masks this vital information

TUFLOW CATCH Wrap up

- Explicit spatial and temporal resolution of hydraulics and pollutant generation is critical for meaningful design and assessment of intervention measures
- Lumping can mask important variations and therefore understanding
- Use appropriate modelling tools to answer the questions being asked
 - Long term broad scale vs short term fine scale
 - Do not use broadscale tools to address fine scale questions
 - · Fine scale tools might not suit very long term simulations
- Download TUFLOW CATCH and run our new tutorial for free to see for yourself!
 TUFLOW

Questions?

