



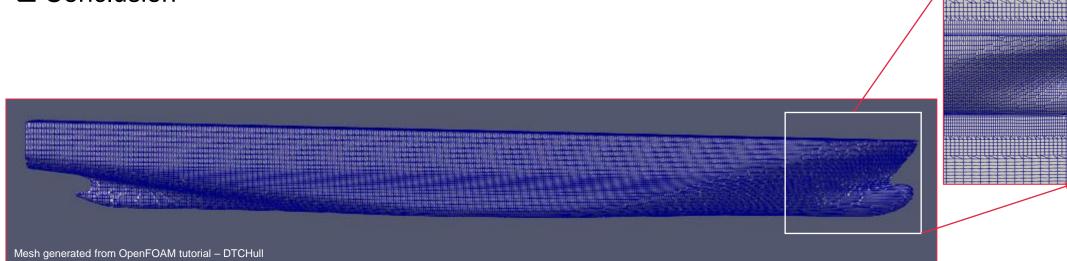
# Hydraulic Modelling Using Computational Fluid Dynamics

Introduction on OpenFOAM

Ray Shi, Adjunct lecturer, School of Civil Engineering, UQ Australia Water School Webinar






# Topics to covered today

Open√FOAM

- ☐ OpenFOAM introduction
- ☐ OpenFOAM Code structures
- ☐ Main solver for large-scale hydraulic modelling InterFoam
- ☐ Few examples
- ☐ Conclusion











## OpenFOAM introduction

- OpenFOAM == Open Field of Operation And Manipulation (OpenFOAM)
- ❖ An open-source package, built with C++ modules.
- Linux based package, based on Objected Oriented Programming
- ❖ Developed in the 1980s at Imperial College, and now by OpenCFD Ltd, ESI Group.
- ❖ A set of code libraries for continuum mechanics (Solids + Fluids)
- ❖ Based on Finite Volume Method cell centred

### **Prerequisite Skills**

- ❖ Basic level of Linux interface, C++ coding
- Fundamentals of Fluid Mechanics and Computational Fluid Dynamics (CFD)

CRICOS code 00025B

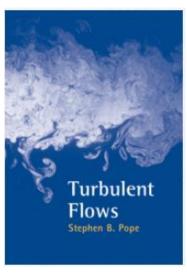


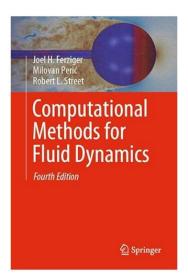


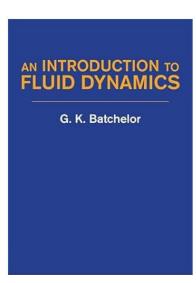
# OpenFOAM vs commercial packages

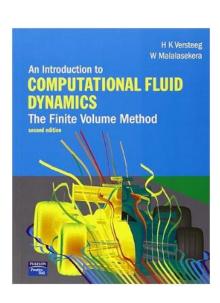
|                        | OpenFOAM | Commercial Packages         |
|------------------------|----------|-----------------------------|
| 1. Module Variety      | ****     | $\star\star\star\star\star$ |
| 2. Learning Difficulty |          |                             |
| 3. Source Code         | ****     | <b>★</b>                    |
| 4. Self Development    |          |                             |
| 5. Documentation       |          | ****                        |
| 6. GUI user friendly   |          |                             |
| 7. Cost                | ****     | *                           |
| 8. Code efficiency     |          |                             |
| 9. Parallel computing  | ****     | $\star\star\star\star\star$ |
| 10. GPU                |          |                             |

- **❖** Above ranking only represents author's personal opinions !!!
- ❖ In short, OpenFOAM is free to download, use, modify and distribute.


CRICOS code 00025B





# Theoretical background

- Introduction to fluid dynamics
- Finite volume method
- Turbulence theory





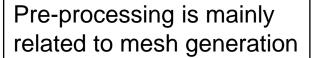




Batchelor, G. K. (1967). An introduction to fluid dynamics. Cambridge university press.

Ferziger, J. H., Perić, M., & Street, R. L. (2002). *Computational methods for fluid dynamics*. springer.

Pope, S. B. (2001). *Turbulent flows, Cambridge University Press, Cambridge*.


Versteeg, H. K. and Malalasekra, W. (1995). An introduction to computational fluid dynamics the finite volume method Harlow, Essex, England; Longman Scientific & Technical: New York: Wiley,.





### Workflows

### Pre-processing



### OpenFOAM functions

- ▶ blockMesh
- > snappyHexMesh
- foamyHexMesh
- > checkMesh
- > extrudeMesh
- Other mesh utilities

### **External Tools**

- > Gmsh
- > enGrid
- > SALOME

### Modelling

### Standard flow-motion solvers:

- Incompressible flow e.g. icoFoam, simpleFoam
- Compressible flow e.g.
   rhosimpleFoam, sonicFoam
- Multiphase flow e.g.
   interFoam,
   twoPhaseEulerFoam

# Solution algorithms for N-S equations :

> SIMPLE, PISO and PIMPLE

### Turbulence modelling

> RAS, LES, DNS

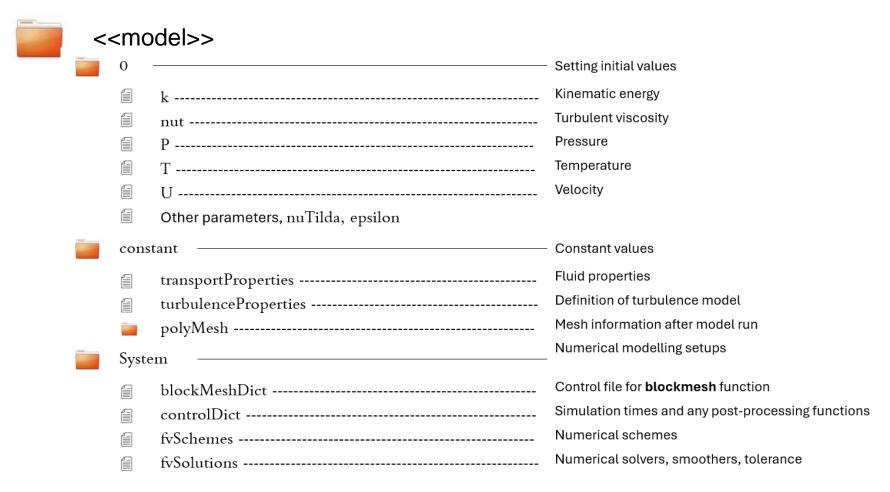
### Post-processing

# Post-processing functions has two parts:

### Post-processing utilities:

- fieldAverage
- > Probes
- codeFunctionObject

#### External tools


- ParaView
- > SALOME
- > Gnuplot





### Model structures

### OpenFOAM model folder structures







- ❖ For large-scale hydraulic modelling (e.g. **fish passage**, **spillway**, **dam-break**), free surface is important to be captured, and air and water phases are typically considered.
- ❖ The InterFoam solves the two incompressible, isothermal immiscible flows (e.g. air and water for most case).
- ❖ Volume of Fluid (VOF) used to track free surface.

### **Continuity equation**

### **Momentum equation**

$$\frac{\partial u_i}{\partial x_i} = 0$$

$$\frac{\partial \rho u_i}{\partial t} + \frac{\partial (\rho u_j u_i)}{\partial x_j} - \frac{\partial \tau_{ei,j}}{\partial x_j} = -\frac{\partial \rho}{\partial x_i} + \rho g + \sigma \kappa \frac{\partial \alpha_f}{\partial x_i}$$

#### Note:

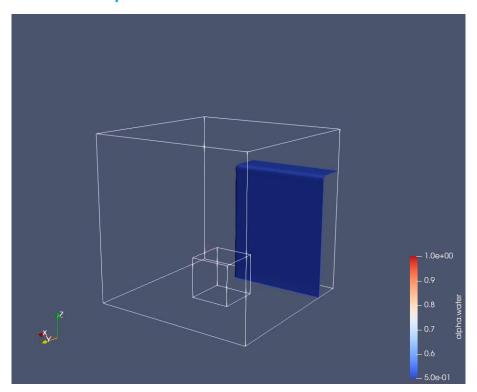
- $\alpha_{\rm f}$  is an indicator function between 0 for fluid and 1 for fluid
- $\kappa$  is the interface curvature, calculated as

$$\kappa = \frac{\partial}{\partial x_i} \left( \frac{\partial \alpha_f / \partial x_i}{\left| \partial \alpha_f / \partial x_i \right|} \right)$$

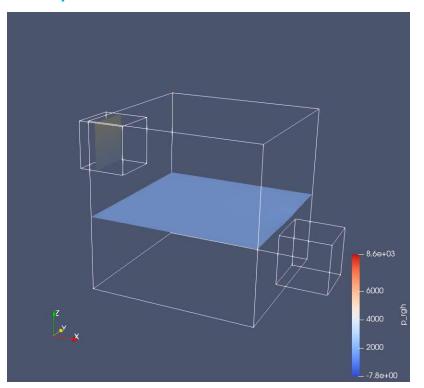




Simple examples on a two-dimensional dam-break type flow





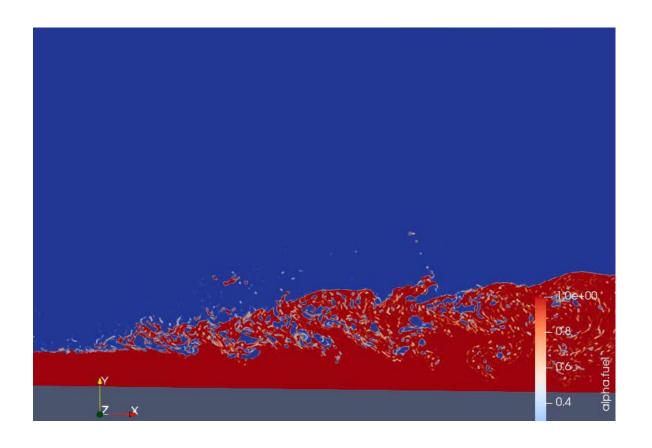




Simple 3d modelling

**OpenFOAM tutorial – 3D dam break** 



**OpenFOAM tutorial – iobasin** 








### Complex modelling

- ❖ Large scale modelling breaking bore
- Cross-sectional view of the breaking bore
- Large eddy simulation used
- ❖ Mesh size 2.5 mm
- ❖ Large computational resources HPC

