What's New with HEC-RAS 6.0

Gary Brunner, P.E., D. WRE, M.ASCE

Major New Hydraulics Features for HEC-RAS 6.0

- Spatial Precipitation
- Spatial Infiltration
- Bridge Hydraulics inside 2D Flow Areas
- Wind Forces
- 1D Finite Volume solver
- New 2D full momentum solver with greater Momentum conservation properties
- Pump stations inside 2D Flow Areas
- Computational speed improvements
- 3D Visualization tool

Spatial Precipitation

Gridded Data

- HEC-DSS file format (from HEC-MetView)
- GRIB NWS
- NetCDF NWS

Point Gage Data

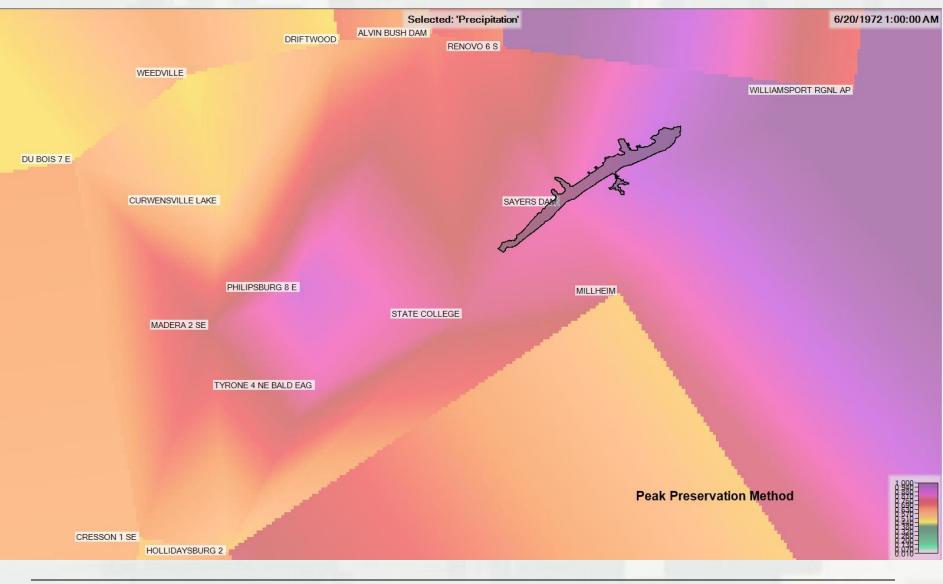
- HEC-DSS time series
 - Regular Interval
 - Irregular Interval
- User Entered into a Table

Unsteady Flow Boundary Conditions

L Unsteady Flow Data - Gridded Precipitation -	×
File Options Help	
Description:	ply Data
Boundary Conditions Initial Conditions Meteorological Data Observed Data	1
Precipitation/Evapotranspiration: Enable 💌 Wind: No Wind Forces 💌	
Meteorological Stations (required for point time series data) Create/Edit Stations Rasterization Parameters (Optional)	
Meteorological Variables	
Mode: Gridded Ratio (Optional): Gridded Data - DSS Gridde Point	
Source Gridded Constant	
	2 9
Projection Override (Optional):	ž
Evapotranspiration Mode: None	
4	

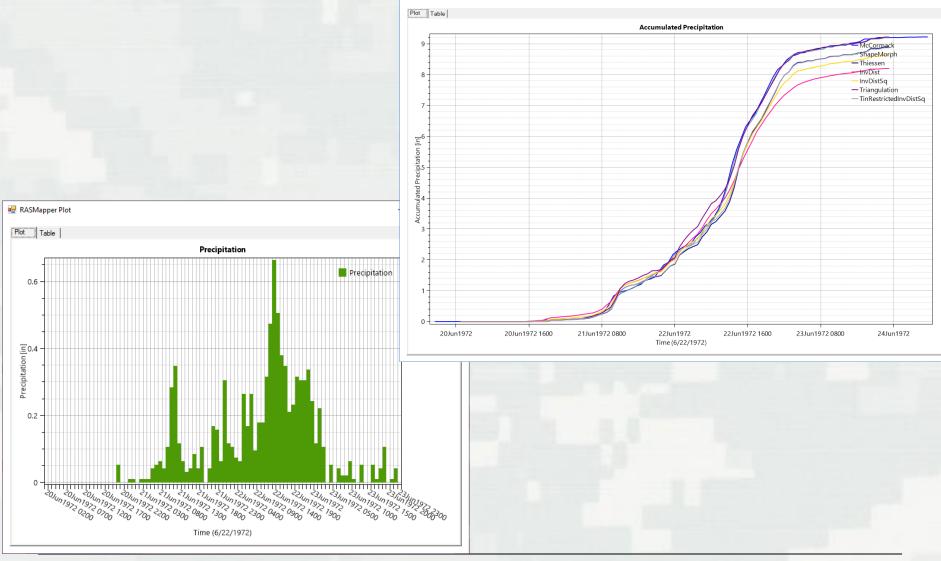
Gridded Data

Boundary Conditions Initial Conditions Meteorological Data Observed Data
Precipitation/Evapotranspiration: Enable 💌 Wind: No Wind Forces 💌
Meteorological Stations (required for point time series data) Create/Edit Stations Rasterization Parameters (Optional)
Meteorological Variables Precipitation Mode: Gridded Tatio (Optional): Gridded Data - DSS
Gridded Data Source: DSS DSS Dat DSS GDAL Raster File(s) Hiename: C: HEC Data (HEC-RAS)(Automated Test Datasets 51)(2D Unsteady Flow Hydr Path: /SHG/MARFC/PRECIP/01SEP2018:0200/01SEP2018:0300/NEXRAD/
Projection Override (Optional):
Evapotranspiration Mode: None

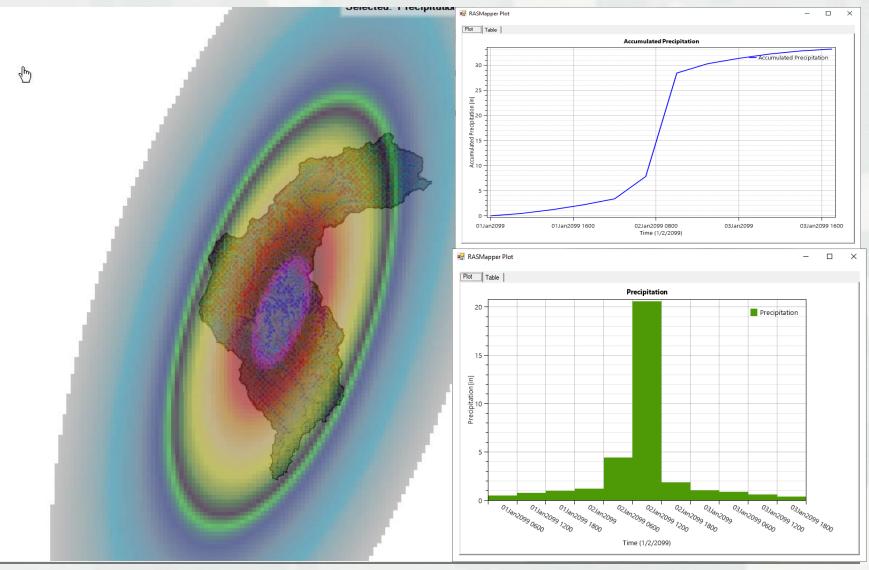

Point Gage Data

】 Unsteady Flow Data - Point Precipiation	n Data 1972	- 0	×				
File Options Help							
Description:		<u>с</u> Ар	ply Data				
Boundary Conditions Initial Conditions Me	eteorological Data Observed Data						
Precipitation/Evapotranspiration: Enable 💌	Wind: No Wind Forces 💌						
Meteorological Stations (required for Create/Edit Stations Rasteriza	or point time series data)	Plot Stations					
Meteorological Variables Precipitation							
	Meteorological Stations	6					
Point Time Series Data Interpolation Method: Thiessen Polyg	Detailed Table	45					
Station Name Sum 1 ALVIN BUSH DAM DSS:	Point Name	Gauge Height(m)	Latitude	Longitude	Project X	Project Y	
2 DRIFTWOOD DSS:	1 ALVIN BUSH DAM	10	41.05				and the second second
		10	41.35	-77.9166667	1922740.6	431189.94	
3 HOLLIDAYSBURG 2 DSS:	2 DRIFTWOOD	10		-77.9166667 -78.1333333		431189.94 427128.04	P
4 PHILIPSBURG 8 E DSS:	2 DRIFTWOOD 3 HOLLIDAYSBURG 2		41.3383333				F
4 PHILIPSBURG 8 E DSS: 5 WILLIAMSPORT RGNL AP DSS:		10	41.3383333 40.4272222	-78.1333333	1863234.88 1790610.4	427128.04	
4 PHILIPSBURG 8 E DSS: 5 WILLIAMSPORT RGNL AP DSS: 6 CRESSON 1 SE DSS:	3 HOLLIDAYSBURG 2	10 10	41.3383333 40.4272222 40.7138889	-78.1333333 -78.3888889	1863234.88 1790610.4 2012703.14	427128.04 95591.73	ľ
4 PHILIPSBURG 8 E DSS: 5 WILLIAMSPORT RGNL AP DSS:	3 HOLLIDAYSBURG 2 4 MILROY 2 WNW	10 10 10	41.3383333 40.4272222 40.7138889 40.8963889	-78.1333333 -78.3888889 -77.5905556	1863234.88 1790610.4 2012703.14 1838408.6	427128.04 95591.73 199422.25	ľ
4 PHILIPSBURG 8 E DSS: 5 WILLIAMSPORT RGNL AP DSS: 6 CRESSON 1 SE DSS:	3 HOLLIDAYSBURG 2 4 MILROY 2 WNW 5 PHILIPSBURG 8 E	10 10 10 10	41.3383333 40.4272222 40.7138889 40.8963889 40.4333333	-78.1333333 -78.3888889 -77.5905556 -78.2205556	1863234.88 1790610.4 2012703.14 1838408.6 1896963.52	427128.04 95591.73 199422.25 266227.39	ľ
4 PHILIPSBURG 8 E DSS: 5 WILLIAMSPORT RGNL AP DSS: 6 CRESSON 1 SE DSS:	3 HOLLIDAYSBURG 2 4 MILROY 2 WNW 5 PHILIPSBURG 8 E 6 RAYSTOWN LAKE 2	10 10 10 10 10 10	41.3383333 40.4272222 40.7138889 40.8963889 40.4333333 40.6705556	-78.1333333 -78.3888889 -77.5905556 -78.2205556 -78.0069444 -78.2386111	1863234.88 1790610.4 2012703.14 1838408.6 1896963.52 1832952.79	427128.04 95591.73 199422.25 266227.39 97268.31	
4 PHILIPSBURG 8 E DSS: 5 WILLIAMSPORT RGNL AP DSS: 6 CRESSON 1 SE DSS: 7 CURWENSVILLE LAKE DSS:	3 HOLLIDAYSBURG 2 4 MILROY 2 WNW 5 PHILIPSBURG 8 E 6 RAYSTOWN LAKE 2 7 TYRONE	10 10 10 10 10 10 10	41.3383333 40.4272222 40.7138889 40.8963889 40.4333333 40.6705556 41.2452	-78.1333333 -78.3888889 -77.5905556 -78.2205556 -78.0069444 -78.2386111	1863234.88 1790610.4 2012703.14 1838408.6 1896963.52 1832952.79 2197049.88	427128.04 95591.73 199422.25 266227.39 97268.31 183975.72	
4 PHILIPSBURG 8 E DSS: 5 WILLIAMSPORT RGNL AP DSS: 6 CRESSON 1 SE DSS: 7 CURWENSVILLE LAKE DSS: Evapotranspiration	3 HOLLIDAYSBURG 2 4 MILROY 2 WNW 5 PHILIPSBURG 8 E 6 RAYSTOWN LAKE 2 7 TYRONE 8 WILLIAMSPORT RGNL AP	10 10 10 10 10 10 10 10	41.3383333 40.4272222 40.7138889 40.8963889 40.4333333 40.6705556 41.2452	-78.1333333 -78.3888889 -77.5905556 -78.2205556 -78.0069444 -78.2386111 -76.9188889 -78.5916667	1863234.88 1790610.4 2012703.14 1838408.6 1896963.52 1832952.79 2197049.88	427128.04 95591.73 199422.25 266227.39 97268.31 183975.72 394058.28	
4 PHILIPSBURG 8 E DSS: 5 WILLIAMSPORT RGNL AP DSS: 6 CRESSON 1 SE DSS: 7 CURWENSVILLE LAKE DSS: Evapotranspiration	3 HOLLIDAYSBURG 2 4 MILROY 2 WNW 5 PHILIPSBURG 8 E 6 RAYSTOWN LAKE 2 7 TYRONE 8 WILLIAMSPORT RGNL AP 9 CRESSON 1 SE	10 10 10 10 10 10 10 10 10	41.3383333 40.4272222 40.7138889 40.8963889 40.4333333 40.6705556 41.2452 40.45 41.05	-78.1333333 -78.3888889 -77.5905556 -78.2205556 -78.0069444 -78.2386111 -76.9188889 -78.5916667	1863234.88 1790610.4 2012703.14 1838408.6 1896963.52 1832952.79 2197049.88 1734232.01 1786461.52	427128.04 95591.73 199422.25 266227.39 97268.31 183975.72 394058.28 104373.03	
4 PHILIPSBURG 8 E DSS: 5 WILLIAMSPORT RGNL AP DSS: 6 CRESSON 1 SE DSS: 7 CURWENSVILLE LAKE DSS: Evapotranspiration	3 HOLLIDAYSBURG 2 4 MILROY 2 WNW 5 PHILIPSBURG 8 E 6 RAYSTOWN LAKE 2 7 TYRONE 8 WILLIAMSPORT RGNL AP 9 CRESSON 1 SE 10 CURWENSVILLE LAKE	10 10 10 10 10 10 10 10 10 10 10	41.3383333 40.4272222 40.7138889 40.8963889 40.4333333 40.6705556 41.2452 40.45 41.05	-78.1333333 -78.3888889 -77.5905556 -78.2205556 -78.0069444 -78.2386111 -76.9188889 -78.5916667 -78.41 -78.7583333	1863234.88 1790610.4 2012703.14 1838408.6 1896963.52 1832952.79 2197049.88 1734232.01 1786461.52	427128.04 95591.73 199422.25 266227.39 97268.31 183975.72 394058.28 104373.03 322534.71	
4 PHILIPSBURG 8 E DSS: 5 WILLIAMSPORT RGNL AP DSS: 6 CRESSON 1 SE DSS: 7 CURWENSVILLE LAKE DSS: Evapotranspiration	3 HOLLIDAYSBURG 2 4 MILROY 2 WNW 5 PHILIPSBURG 8 E 6 RAYSTOWN LAKE 2 7 TYRONE 8 WILLIAMSPORT RGNL AP 9 CRESSON 1 SE 10 CURWENSVILLE LAKE 11 DU BOIS 7 E	10 10 10 10 10 10 10 10 10 10 10 10 10	41.3383333 40.4272222 40.7138889 40.8963889 40.4333333 40.6705556 41.2452 40.45 41.05 41.1208333 40.8283333	-78.1333333 -78.3888889 -77.5905556 -78.2205556 -78.0069444 -78.2386111 -76.9188889 -78.5916667 -78.41 -78.7583333	1863234.88 1790610.4 2012703.14 1838408.6 1896963.52 1832952.79 2197049.88 1734232.01 1786461.52 1690689.7 1778927.51	427128.04 95591.73 199422.25 266227.39 97268.31 183975.72 394058.28 104373.03 322534.71 349266.08	

Point Gage Data


L Unsteady Flow Data - Point Precipiation Data 1972	_	
File Options Help		
Description:	÷	Apply Data
Boundary Conditions Initial Conditions Meteorological Data Observed Data		
Precipitation/Evapotranspiration: Enable 💌 Wind: No Wind Forces 💌		
Meteorological Stations (required for point time series data)		
	Plot Stations .	
Metaorelogical V(prishlas		
Meteorological Variables		
	biessen Poly	200)
	niessen Polyg	Jony
Point Time Series Data		1
Interpolation Method: Thiessen Polygon	Edit	. 🗠
Station Name Thiessen Polygon		Edit 🔺
1 ALVIN BUSH DAM Inv Distance p 0.500 (inches)		
2 DRIFTWOOD Inv Distance Sq (Restricted) 0.390 (inches)		
3 HOLLIDAYSBURG Triangulation 2.90 (inches)		
4 PHILIPSBURG 8 E Peak Preservation 0.550 (inches)		
5 WILLIAMSPORT F Shape Preservation 0.850 (inches)		
CRESSON 1 SE		
7 CURWENSVILLE LAKE DSS: data range = 0.000 to 0.300 (inches)		··· 🔻
Evapotranspiration		
Mode: None		

Cumulative Rainfall



Rainfall Time Series Plots

💀 RASMapper Plot

PMP Example

Spatial Infiltration


Three Methods


- Deficit Constant method
- SCS Curve Number
- Green and Ampt
- Spatial Data
 - Soils
 - Land cover

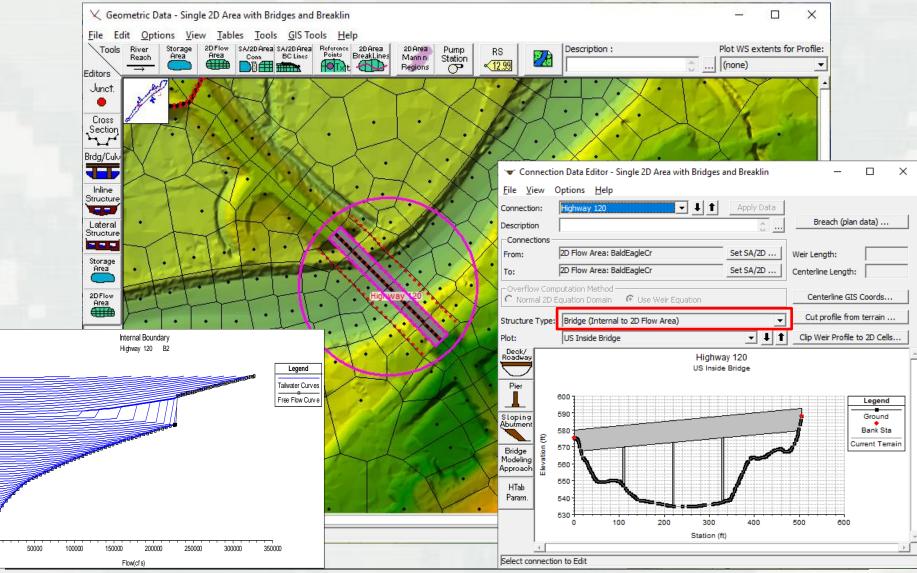
Other Optional Data

- Evapotranspiration
- Mean Monthly Pan evaporation data

Gridded Precipitation example HEC-RAS

Bridge Hydraulics inside of a 2D Flow Area

- Utilizing existing HEC-RAS 1D Bridge Hydraulics methods inside of a 2D Flow Area.
- Model complete range of Bridge Hydraulic flow regimes:
 - Low flow
 - Pressure flow
 - Pressure flow and weir flow (road over topping)
 - Low flow and weir flow

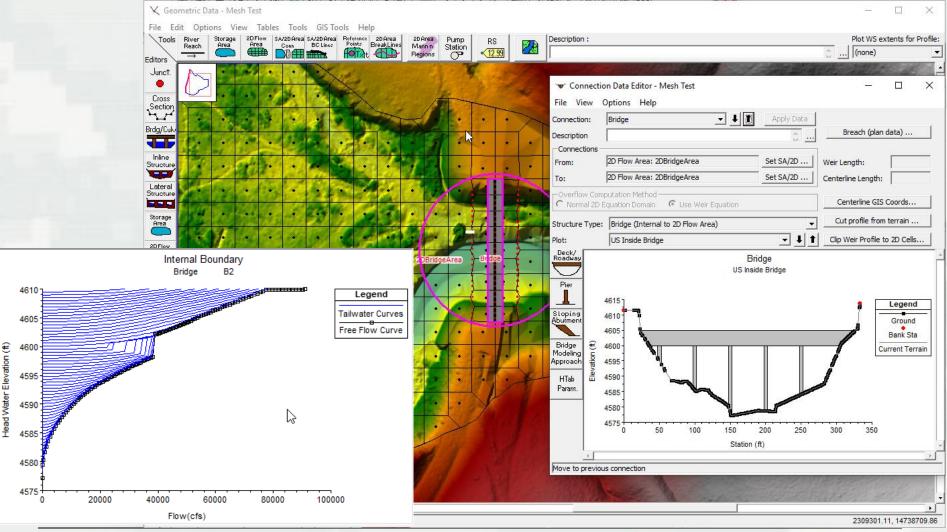

Why is it Important?

- Previous versions of HEC-RAS had no method for handling bridges inside of a 2D Flow Areas
- Modelers were forced to do 1D channels with 2D Floodplains where bridges are important.
 - 1D to 2D connections can be complicated
 - Time consuming
 - May cause instabilities
 - Less accurate for channel to floodplain flow transfers
 - More computation time to develop models and possible run times.
 - The new 2D Bridge Capability has the following benefits:
 - Less need for combined 1D/2D modeling
 - Able to develop more detailed 2D models
 - Greater Modeling flexibility
 - More Stable numerical solutions
 - More accurate flow transfers from channel to floodplain
 - Possibly faster computationally (model specific)

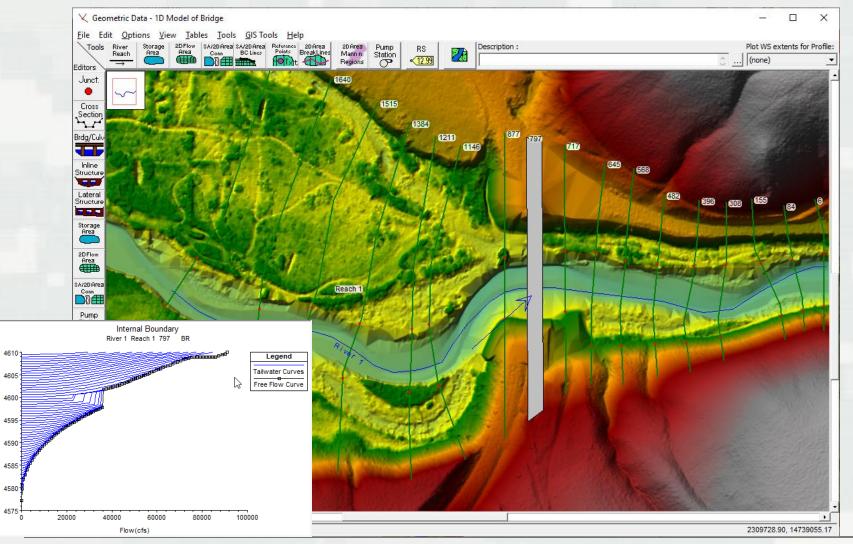
Approach

- Use HEC-RAS 1D Bridge Geometry and Cross Section Layout (automated layout) inside of 2D Flow Area
- Develop a family of Headwater-Tailwater-Flow curves from RAS 1D bridge hydraulic calculations
- Using a special momentum equation that gets applied only at the bridge 2D cell faces:
 - Friction loss, pressure differential, and convective acceleration forces are equated from the water surface difference in the bridge curves.
 - The forces are distributed across multiple faces though the bridge based on conveyance.
 - Local acceleration is calculated on the fly, as it is not a force in curves
- Bridge faces are then solved in 2D just like all other faces.
- Extremely efficient almost no increase in computations.

1D Bridge Data and Curves

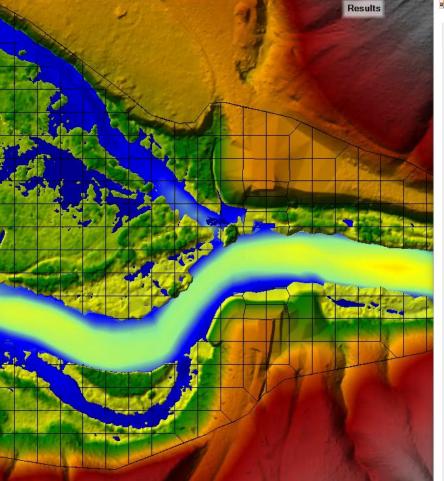

600 J

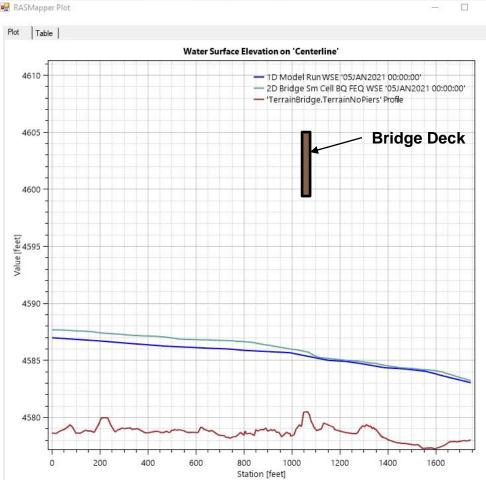
£ 58

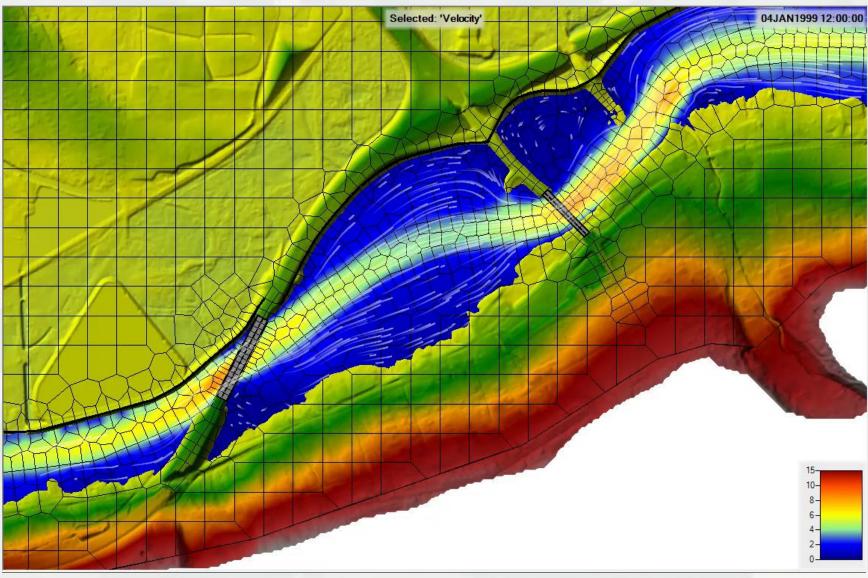

š

Vater

Results 1D vs 2D Model Comparison




1D Model of Same Area


Head Water Elevation (ft)

1D and 2D Comparison Animation

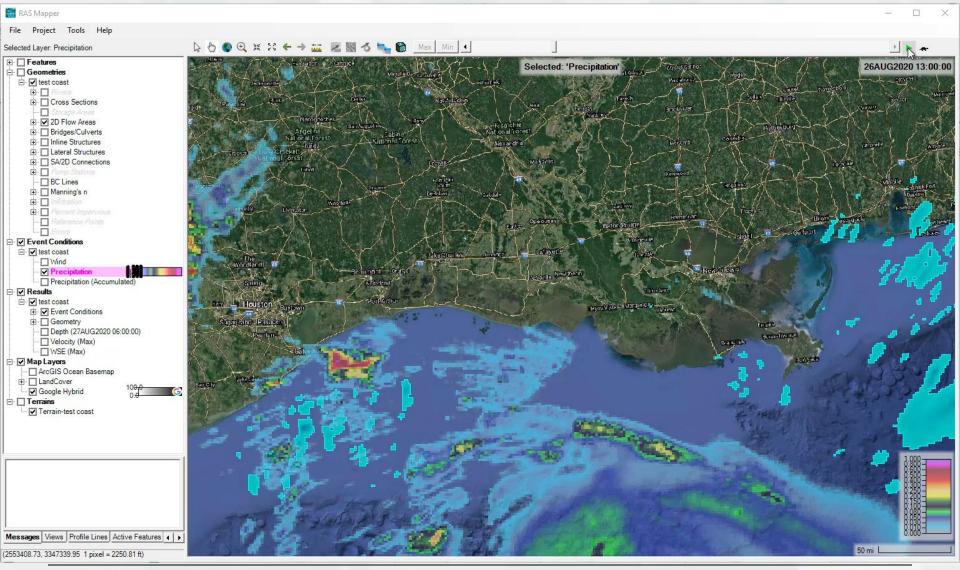
Multiple Bridges

Wind Forces

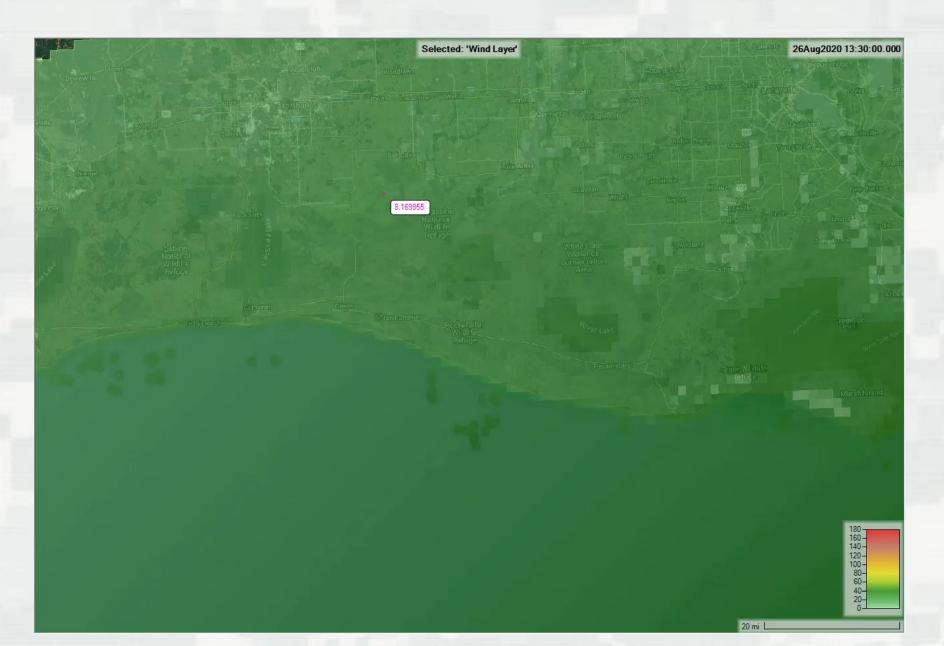
Added to 1D and 2D solution algorithms

- 1D Finite Difference and 1D Finite Volume SWE
- 2D SWE current and new equation solver.
- Not in 2D Diffusion Wave solver

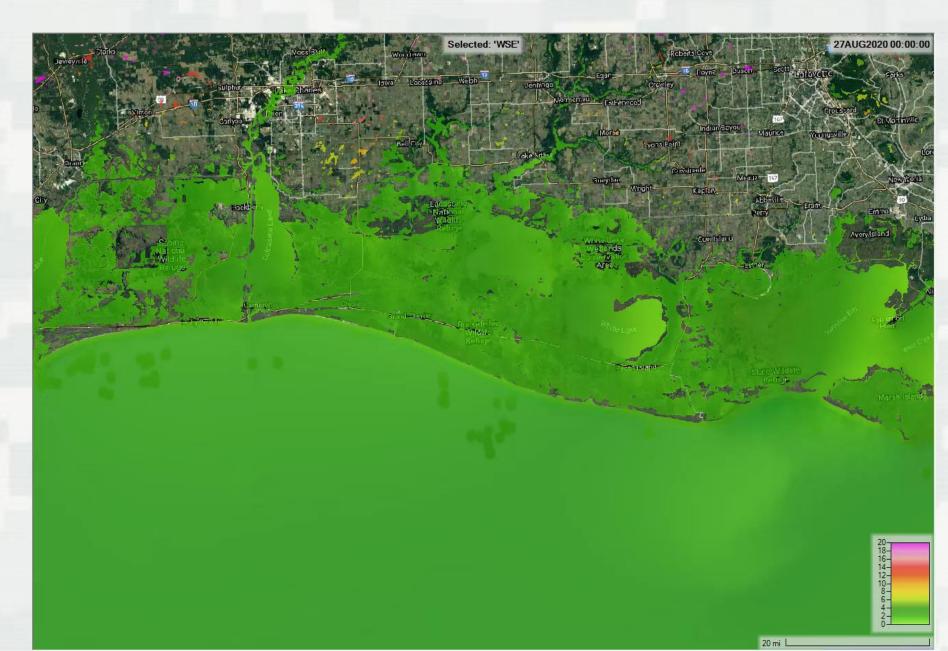
1D Momentum Equation


$$\frac{\partial Q}{\partial t} + \frac{\partial (VQ)}{\partial x} + gA\left(\frac{\partial \eta}{\partial x} + S_f + S_h\right) = T_w \frac{\tau_{sR}}{\rho_w}$$

Data Sources


- Gridded Data
- Gaged Point data
- User Entered Table

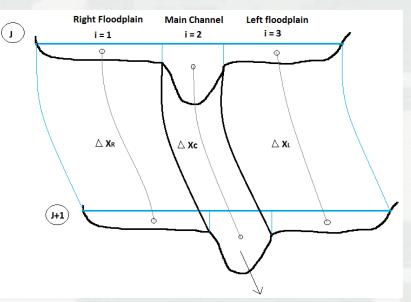
Animations Spatial Wind Forces in 2D Modeling Hurricane Laura 2020


Hurricane Laura Precipitation

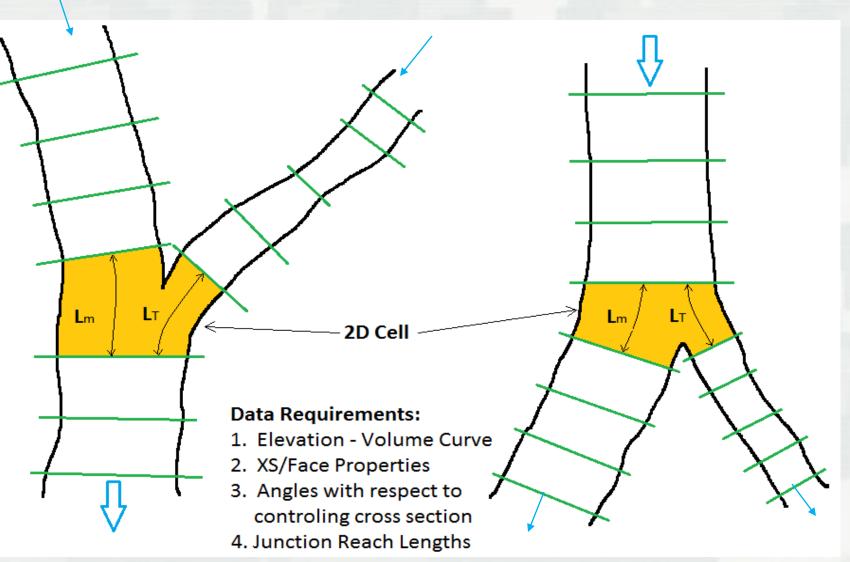
Hurricane Laura Wind Field

Hurricane Laura Water Surface

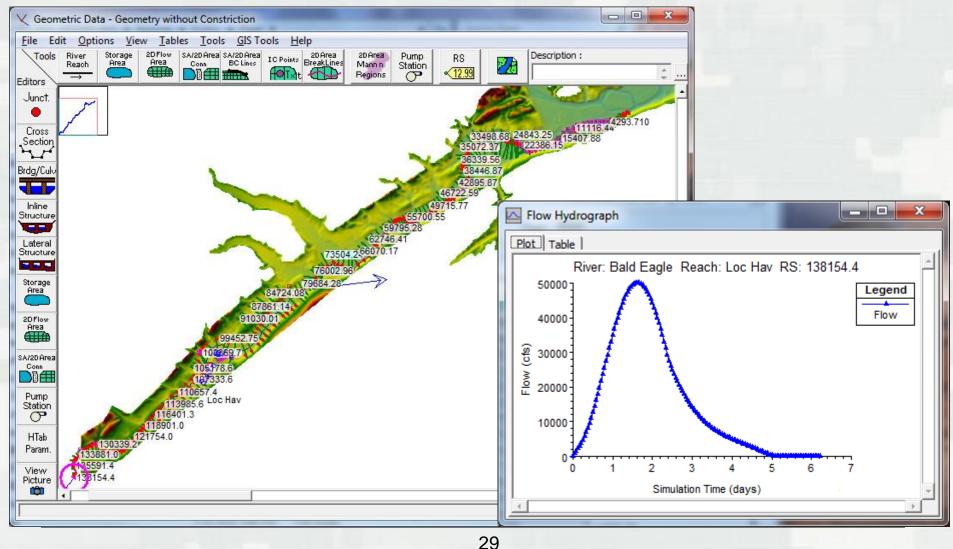
1D Finite Volume Solution Algorithm

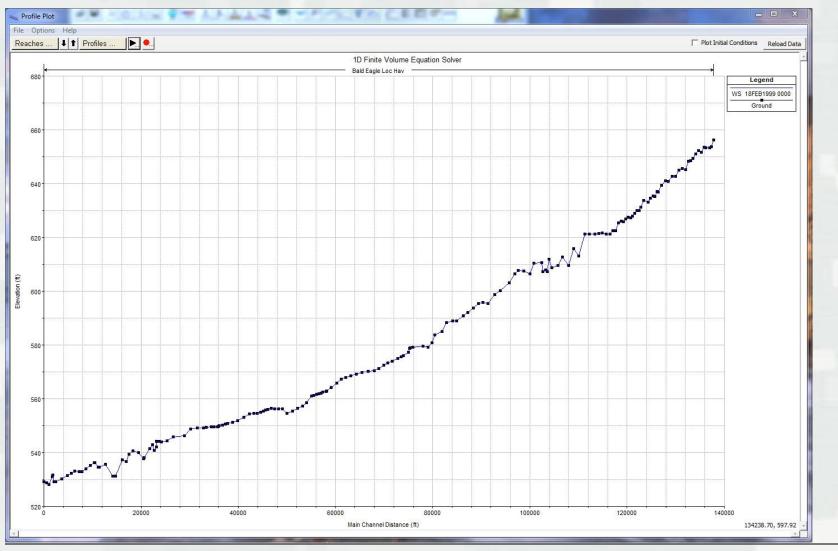

The new 1D Finite Volume algorithm has the following positive attributes:

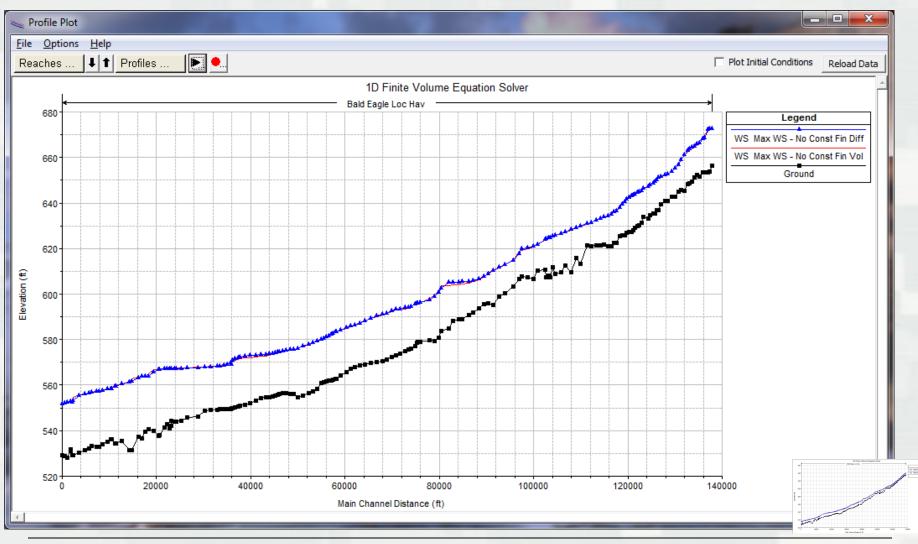
- Can start with channels completely dry, or they can go dry during a simulation (wetting/drying)
- Very stable for low flow modeling
- Can handle extremely rapidly rising hydrographs without going unstable
- Handles subcritical to supercritical flow, and hydraulic jumps better – No special option to turn on.
- Junction analysis is performed as a single 2D cell when connecting 1D reaches (continuity and momentum is conserved through the junction)

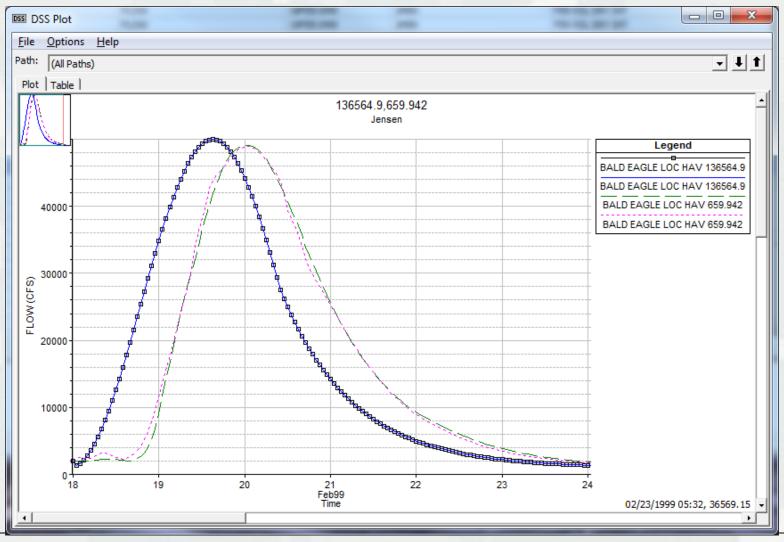

Partial Cells

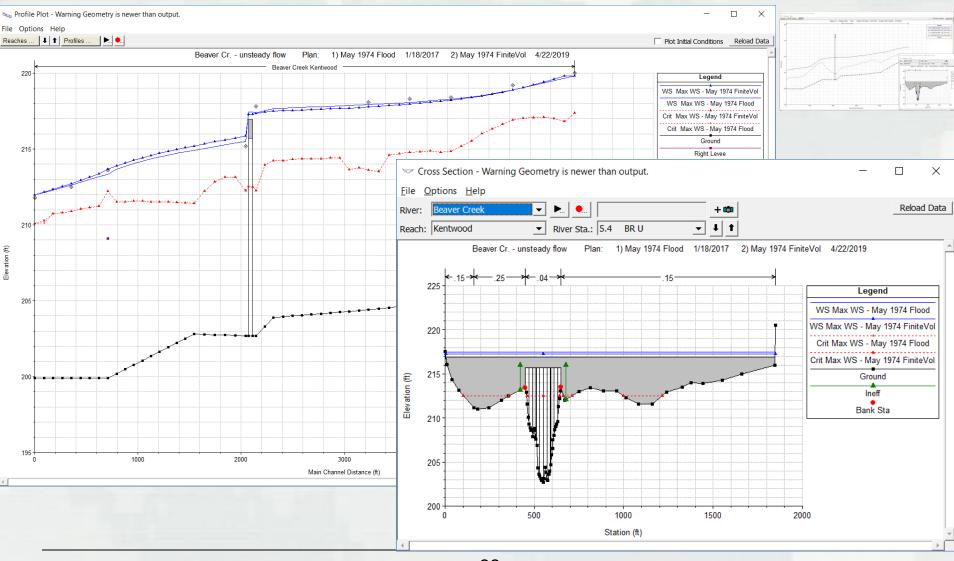
Left floodplain, Main channel, Right floodplain


- Separate cells for main channel, left floodplain and right floodplain.
- Current Finite Difference uses only two flow areas: channel & floodplain
- Notation: Partial cells indexed by *i*
- u_{ji} = channel or overbanks velocities at
- A_{ji} = channel or overbanks partial areas for cross-section *j*
- $A_j = \sum_i A_{ji}$ cross-section total area
- Cross-section partial conveyance $K_{ji} = \left(A_{ji}R_{ji}^{2/3}\right)/\left(n_{ji}/k\right)$
- Cross-section total conveyance $K_j = \sum_i K_{ji}$

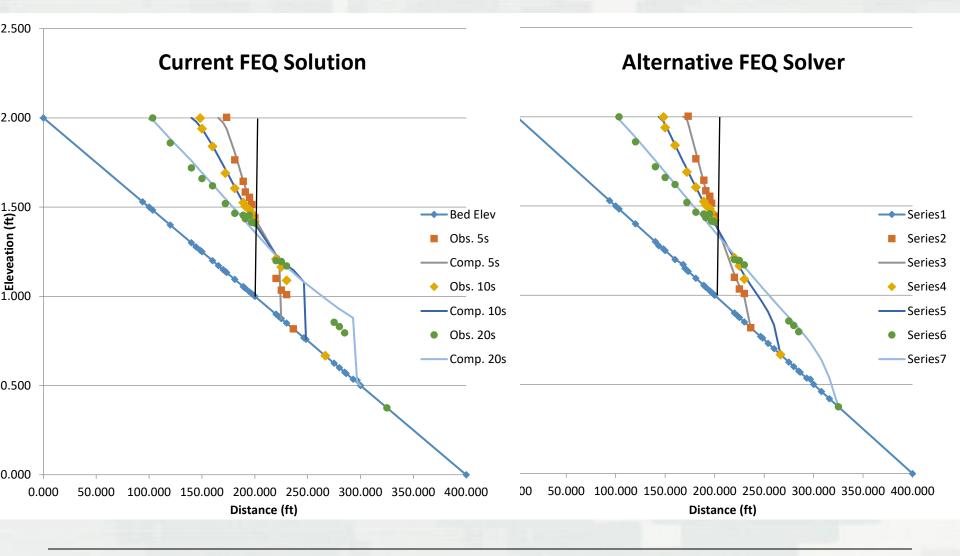

Junctions

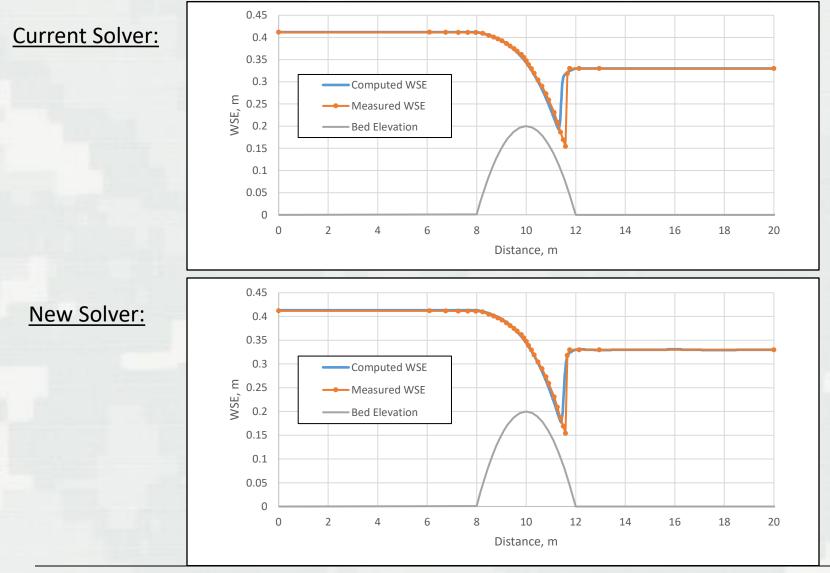

Natural River – No Connections Starting Dry, then wet, then dry


Natural River — Continued Animation - Finite Volume - Dry to Wet to Dry

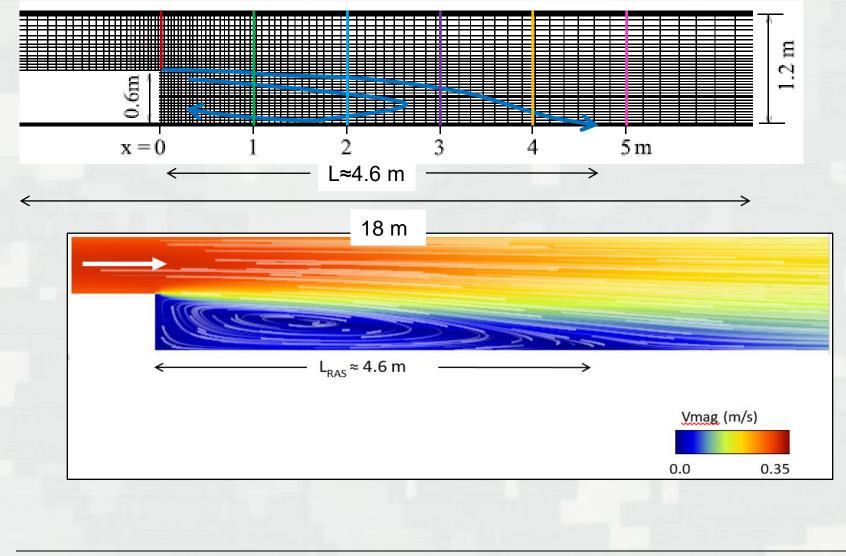

Natural River — Continued Finite Volume vs Finite Difference – Starting Wet

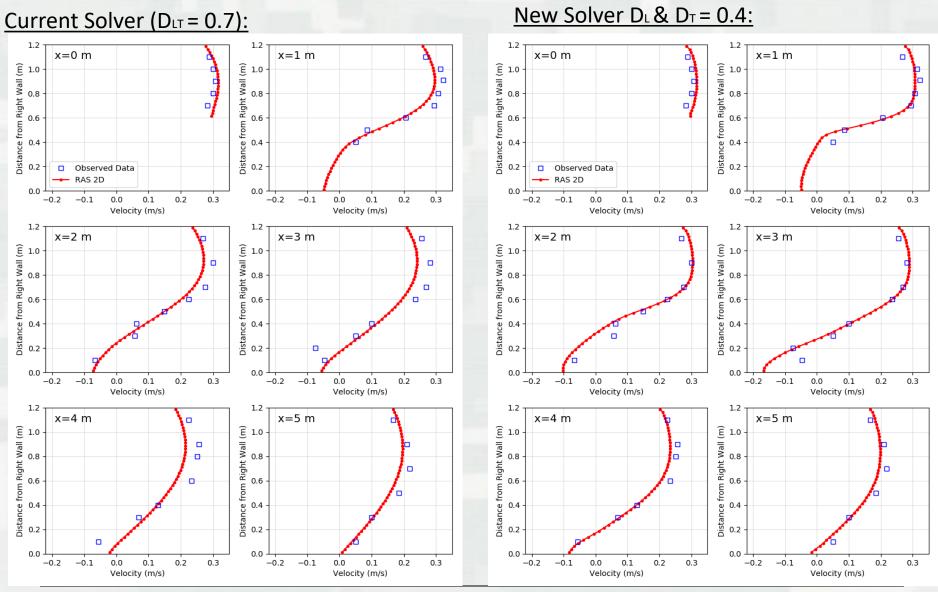
Natural River — Continued Upstream Inflow and Downstream Outflows


1D Bridge Hydraulics Beaver Creek


Alternative Solution Scheme for Shallow Water Equations

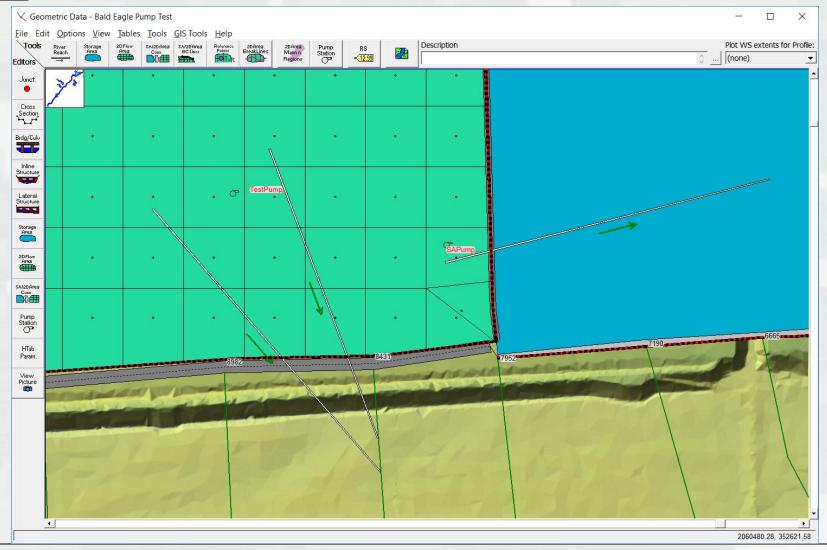
- Momentum conservative discretization of the acceleration terms
 - Greater momentum conservation than current solver in current version
- Semi Explicit Time step is somewhat limited by the Courant condition
 - Generally requires smaller time steps and more computational time to run


Sudden Dambreak in a Flume (WES Data Set and report from 1960)


Flow over a Bump assuming no Friction

Sudden Expansion – Lab Data

Sudden Expansion


Pump Stations Connected to 2D Flow Areas

- Pump Stations now how spatial connections
 - X, Y coordinates for too and from locations
- Can now connect to 2D flow areas
 - 2D cell to another 2D cell
 - 2D cell to Storage Area
 - 2D cell to 1D river reach (XS location)

Pump Stations Example

*

Pump Station

Pump Stations Example

RAS Mapper		
File Tools Help		
		1.1.
		L > *
hered Layer Degh	Selected: 'depth' Pump Station Data Editor Pump Station Name: UpTheHil Pump Connection Data Pump Group Data Advanced Control Rules Pump Group: Group #1 Pump Group: Group #1 Shutdown Time (min): 1 Shutdown Time (min): 1 Width: 1 Pump Names and Base WSEL On/Off Pump GIS Data: Pump #1 Statup #2 560 Statup #2 560	bw(cfs) ► 500 475 400 350 300 200 150 ►
	7 2046050 11 29	0002 41
50014.46, 351039.80 1 pixel = 5.99 feet)		
50014.46, 351039.80 1 pixel = 5.99 feet) 41		

Computational Speed Improvements

New Matrix Format

- Previous versions allowed the matrix to be Non-Symmetric
- Version 6.0 uses a Symmetric matrix format
- This allowed us to use a faster solver Symmetric Positive Definite Solver

Additional Parallelization

 Additional parallelization was done on the 2D code for both matrix setup and solution.

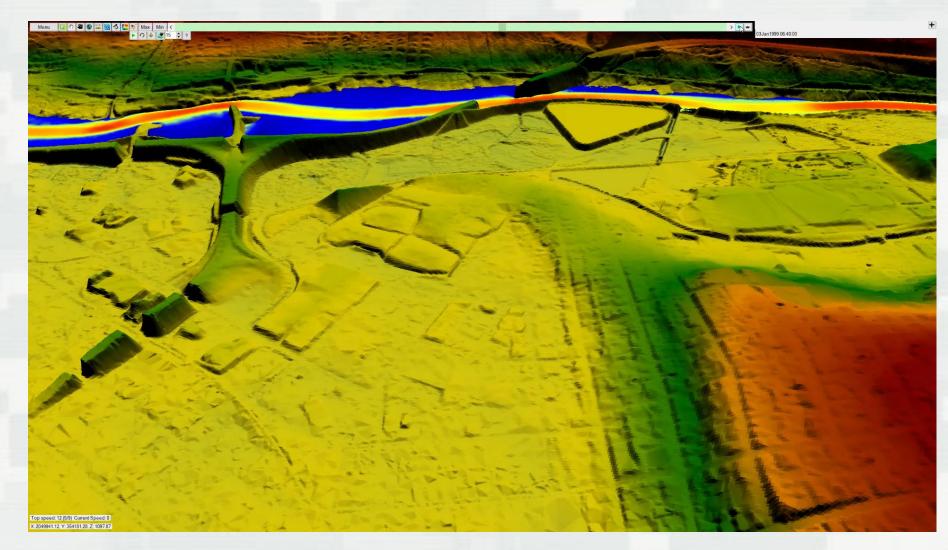
2D Computational Speed

2D Test Name	Number Cells	Equation Type	5.0.7	6.0	Speed Factor
Bald Eagle Detailed	87,022	FEQ	1 hr 29 min 55s	59 min 37s	1.51
Muncie 2D 50ft Grid	5,376	FEQ	1 min 15s	55s	1.36
Saint Paul 2D	2,251	Diff	1 min 32s	1 min 01s	1.51
EU Test No 2	10,000	FEQ	40s	22s	1.82
EU Test No 4	80,000	FEQ	56s	40s	1.40
EU Test No 5	7,460	FEQ	50s	36s	1.39
EU Test No 6	36,492	FEQ	1 min 18s	50s	1.56
EU Test No 7 20m grid	16,590	FEQ	12 min 25s	10 min 26s	1.19
EU Test 8A 2m grid	97,000	FEQ	1 hr 10 min 36s	48 min 26s	1.45
Yolo Bypass2	17,129	FEQ	9 min 34s	8 min 11s	1.17
Boise River	10,423	FEQ	10 min 46s	6 min 57s	1.55
Truckee River 1D/2D	162,805	Diff	1 hr 18 min 27s	47 min 6s	1.67
400 sq mi Watershed	2,033,190	Diff	16 hrs 45 min 14s	9 hrs 53 min 55s	1.69
Average Speed Increase					1.50

2D Iterative Matrix Solvers

HEC-RAS 5.0.7 uses a solver called PARDISO - direct solver

- Better for model stability and volume accounting
- Slower


For HEC-RAS 6.0 we have added optional Iterative Solvers

- Potentially faster
- Requires user-based solution tolerance
- Potentially less stable

With Iterative Solvers

2D Test Name	Number Cells	Equation Type	5.0.7	6.0	6.0 Iter Solv	Speed Factor
Bald Eagle Detailed	87,022	FEQ	1 hr 29 min 55s	59 min 37s	51 min 47s	1.73
Muncie 2D 50ft Grid	5,376	FEQ	1 min 15s	55s	51s	1.47
Saint Paul 2D	2,251	Diff	1 min 32s	1 min 01s	1 min 52s	0.82
EU Test No 2	10,000	FEQ	40s	22s	13s	3.08
EU Test No 4	80,000	FEQ	56s	40s	25s	2.24
EU Test No 5	7,460	FEQ	50s	36s	24s	2.08
EU Test No 6	36,492	FEQ	1 min 18s	50s	37s	2.11
EU Test No 7 20m grid	16,590	Diff	12 min 25s	10 min 26s	6 min 57s	1.79
EU Test 8A 2m grid	97,000	FEQ	1 hr 10 min 36s	48 min 26s	15 min 2s	4.69
Yolo Bypass2	17,129	FEQ	9 min 34s	8 min 11s	5 min 41s	1.68
Boise River	10,423	FEQ	10 min 46s	6 min 57s	4 min 50s	2.23
Truckee River 1D/2D	162,805	Diff	1 hr 18 min 27s	47 min 6s	1 hr 10 min 30s	1.1
400 sq mi Watershed	2,033,190	Diff	16 hrs 45 min 14s	9 hrs 53 min 55s	11 hr 3 mins 43s	1.52
Average Speed Increase						2.04

3D Visualization tool

