

Water quality model validation using mass balance analysis

Agenda

We'll cover

- Context concentrations and fluxes
- Explore through a hypothetical "calibration"
 - Dissolved oxygen
- Key messages and wrap

Water quality modelling

- What I often hear:
 - Too hard
 - Too many parameters
 - Where do I start?
 - Black box of magic tricks
 - Hocus pocus abracadabra
 - How do I know my model is robust?

Water quality modelling

- Why?
 - We can easily get the 'right answers for the wrong reasons', if
 - The 'right answers' means numerical models can predict 'the same' water quality concentrations (C) as measured concentrations

A concentration is typically a mass per unit volume of water

Dissolved oxygen concentrations are in milligrams of oxygen per litre 'mg/L'

Water quality modelling

- But
 - Dissolved oxygen concentrations are not fundamental quantities: they are the byproduct of multiple environmental oxygen mass fluxes (F)
 - Mass fluxes are fundamental quantities

Water quality modelling

- The problem
 - The number 11: is it 6+5 or 20-9?

- A modelled concentration of 11 might match measurements, but is it matching for the right (mass flux) reasons?
- We cannot tell by looking at a concentrations
- (But let's hope everything is OK and just get on with our modelling project)

Water quality modelling

- The problem
 - The number 11: is it 6+5 or 20-9?

Concentration ———		Fluxes

 A modelled concentration of 11 might match measurements, but is it matching for the right (mass flux) reasons?

Standard practise: focus on matching statistics of modelled and measured concentrations

Water quality modelling

- Concentrations == compliance
- Mass fluxes == understanding
- Understanding is needed to develop robust water quality models
- Therefore mass fluxes are an essential part of water quality modelling projects
 - Set up and calibration
 - Peer review and scenarios and predictive power

Illustrate through a hypothetical example

The premise

- A water supply reservoir has a recurrent January phytoplankton bloom problem, with dissolved oxygen issues at depth
- A 3D hydrodynamic and water quality model has been built and 'calibrated' to assist in managing/remediating the reservoir and/or catchment from which it drains
- Real data sets (e.g. bathymetry, rainfall and meteorology) have been used
- Is the model "right" or "fit for purpose" for oxygen simulation?

The system

- Catchment
 - 5473 hectares
 - 2534, 2397 and 542 ha forest, agriculture and urban
 - ~700mm annual rainfall
- Reservoir
 - 200 hectare surface area
 - Maximum depth ~35m
 - One offtake and two legacy point source discharges

The system

- Catchment
 - 5473 hectares total
 - 2534 ha forest
 - 2397 ha agriculture
 - 542 ha urban
 - ~700mm annual rainfall

The system

- Reservoir
 - 200 hectares
 - Maximum depth ~35m
 - One offtake and two legacy point source discharges
 - High organic content
 - Coarse resolution

Timeseries extraction point

The system

- Build a system model to assist management
- TUFLOW Catch
 - TUFLOW HPC Catchment hydrology and pollutant export
 - TUFLOW FV in-lake 3D water quality
- See our previous TUFLOW water quality webinar!
- https://awschool.com.au/training/webinar-integrated-catchment-and-receiving-water-modelling/

- Prediction / "calibration" to concentrations
- Four modellers
 - Ray
 - Phyllis
 - Ron
 - Brenda
- I am the peer reviewer

Dissolved oxygen concentration timeseries

 Dradiction / "calibration" 	Metric	Ray	Phyllis	Ron	Brenda
to concentrations	R	0.89	0.85	0.81	0.83
• Moriasi 2015	R ²		0.72	0.66	0.69
Very good	NSE	0.78	0.70	→ 0.63	0.65
Good	10A	0.93	0.91	0.90	0.90
 Satisfactory 	RMSE	1.0	1.2	1.3	1.3
 Not satisfactory 	MAE	0.8	0.8	0.9	1.0
	PBIAS	-2.8	5.4	-0.4	-8.8

- But how do these concentrations come about?
 - TUFLOW FV WQ module reports diagnostics: fluxes of every mass in every process
 - Let's have a look at dissolved oxygen mass fluxes!

- Boundary oxygen fluxes
 - Sediments: consume
 - Surface aeration: produce / consume
 - Catchments: produce
 - WWTPs: produce
 - Offtake: consume

- Internal oxygen fluxes
 - Phytoplankton respiration: consume
 - Organic matter mineralisation: consume
 - Ammonium nitrification: consume
 - Phytoplankton primary productivity: produce

DO mass: 01-Jan-2021 to 01-Feb-2021

F = flux	Internal = black box = water quality model parameters	
WWTP	Internal processing Primary productivity Respiration Organics mineralisation Nitrification	
Dissolved oxygen (t) 1/1/2021 - 1/2/2021	Change Initial Nett Sediment Exchange Three largest nett fluxes in red (-) is a loss from the domain	LOW

- Prediction / "calibration" to concentrations
- Moriasi 2015
 - Very good
 - Good
 - Satisfactory
 - Not satisfactory

"	Metric	Ray	Ph is	b a	Brenda	
I	R	0.89	0.85	0.81	0.83	
	R ²	0.79	0.72	0.66	0.69	
	NSE	0.78	0.70	0.63	0.65	
	IOA	0.93	0.91	0.90	0.90	
	RMSE	1.0	1.2	1.3	1.3	
	MAE	0.8	0.8	0.9	1.0	
	PBIAS	-2.8	5.4	-0.4	-8.8	

The outcome

- Solutions
 - Our modellers have the right answers for the wrong reasons!
 - Predictive capability is therefore compromised as the underlying processes are incorrect
- So what do we do?

The outcome

- Engage and understand via flux diagnostics discussion to understand
 - Report and analyse fluxes
 - Managers and decision makers
 - Traditional owners
 - Local knowledge
 - ...non-modellers!

The outcome

- Fluxes can be measured (but aren't as often!)
 - Sediment
 - Phytoplankton
 - Organics
 - Inorganics

The wrap

Concentrations and fluxes

- Not new
 - Hipsey et al. (2020)
 - Same for all constituents, not just oxygen

Environmental Modelling & Software

Volume 128, June 2020, 104697

A system of metrics for the assessment and improvement of aquatic ecosystem models

Matthew R. Hipsey ^{a b} A gideon Gal^c, George B. Arhonditsis^d, Cayelan C. Carey^e,

J. Alex Elliott ^f, <u>Marieke A. Frassl</u>^g, <u>Jan H. Janse</u>^h, <u>Lee de Moraⁱ</u>, <u>Barbara J. Robson ^j</u>

The wrap

Concentrations and fluxes

- Comparing model concentration timeseries with point field measurements (or medians, or by zones) actively excludes understanding
 - Wasteful calibration time often the major project and community resource sink
 - End up arguing over modelled timeseries and measured points not matching
 - Wasteful scenarios
- So
 - Measure fluxes more routinely
 - Use numerical modelling tools that report mass fluxes, e.g. TUFLOW FV WQ module

Questions?

