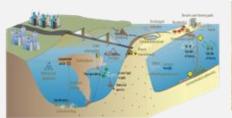
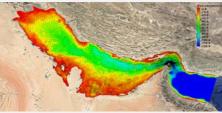


Water Quality Modelling Case Study Environmental Agency Abu Dhabi

Emma McCall


AWS July 2022


Presentation outline

EAD Capacity Building Program

Case Studies - Overview

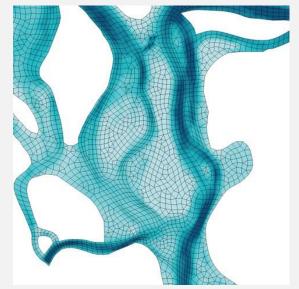
Hydrodynamic and Water Quality Modeling

Focus Case Study Key water quality parameters of: Salinity concentrations Dissolved oxygen Total nitrogen

EAD Capacity Building Program

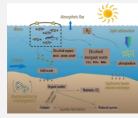
The Environment Agency - Abu Dhabi (EAD) works for the protection of the environment through the promotion of sustainable management practices.

EAD wishes to build internal capacity in the development, use and interpretation of hydrodynamic and marine water quality models (HWQMs).



EAD Capacity Building Program

BMT was commissioned by the Environmental Agency Abu Dhabi (EAD) to conduct a two-year training program to build capacity in numerical modelling

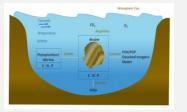

- Understanding how models are built/developed
- The data campaign behind the modelling
- How the data is used to validate/calibrate models
- Types of numerical models
 - Hydrodynamic models and water quality models, 2D or 3D
- Appropriate use of models fit for purpose

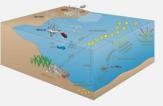
Case Study Overview

Case Study 1 Delma Island Aquaculture Carrying Capacity

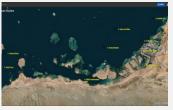
Case Study 2 Mussafah Channel Water Quality

Case Study 3 Al Hidayriyat Island Development

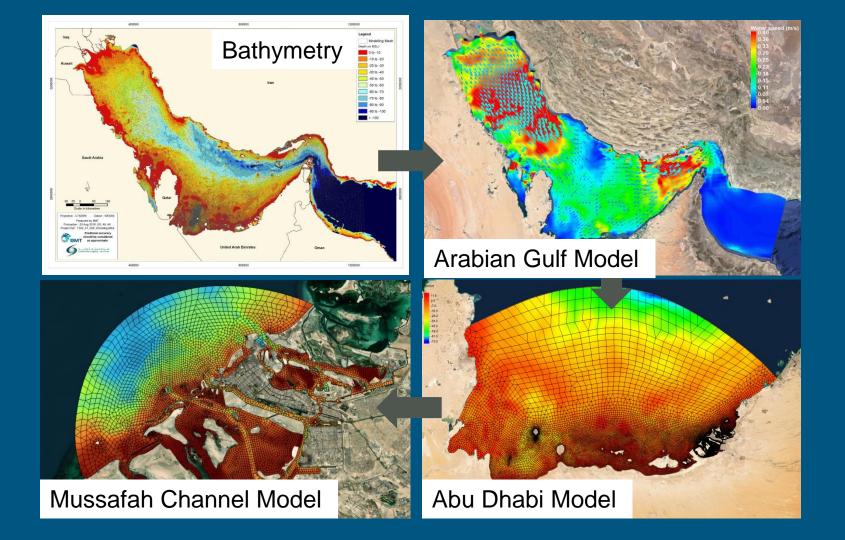

Case Study 4 Mirfa Desalination Plant – Brine Discharge

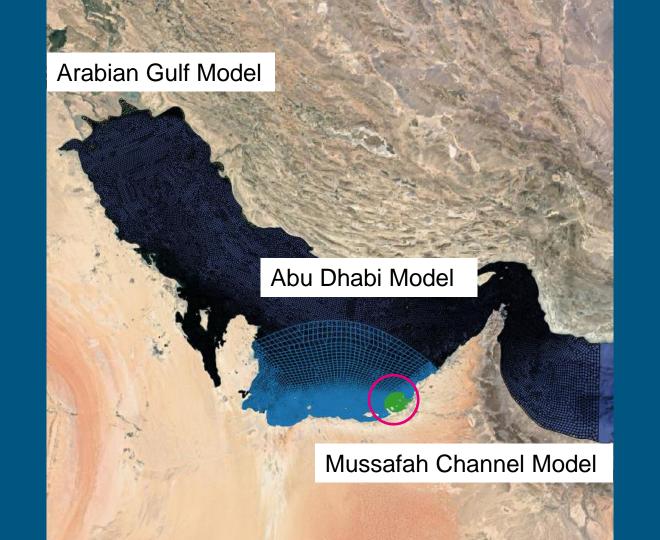

Case Study 5 Khalifa Port Region (Taweelah)

Case Study 6 Al Bateen public beach -Algal Bloom Impact Study

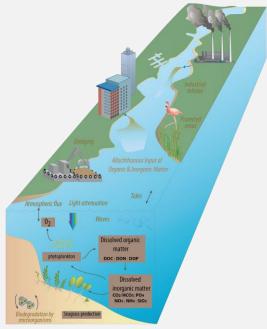

Case Study 7 Pearl Farm Site Selection

Case Study 8 Heavy Metal Contaminants in Abu Dhabi Coastal Waters


Case Study 9 Sea Level Rise Coastal Inundation Risk and Mitigation



Case Study Locations

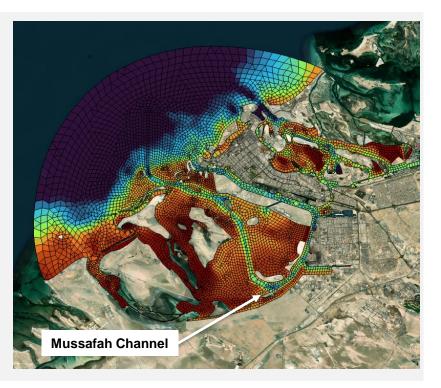


Purpose

Investigate the impact of changes in nutrient loads from Mussafah Channel on nearby marine ecosystems

Study objectives

- Develop a hydrodynamic and water quality model of Mussafah Channel and surrounding area
- Model a base line scenario to represent current nutrient loading from industrial discharges into Mussafah channel
- · Simulate two scenarios representative of:
 - Removal of the industrial discharges (full re-use of treated discharge)
 - Opening Mussafah Channel to the lagoon
- Predict relative impact of changes in nutrient loads to marine ecosystems



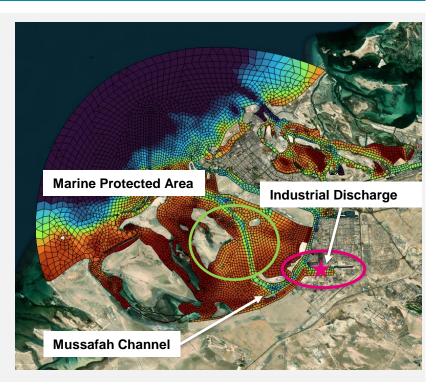
Abu Dhabi near shore waters

- Mussafah Channel deep water channel providing access to Mussafah Industrial Area and ICAD I, II, III
- There are several industrial discharges into Mussafah Channel



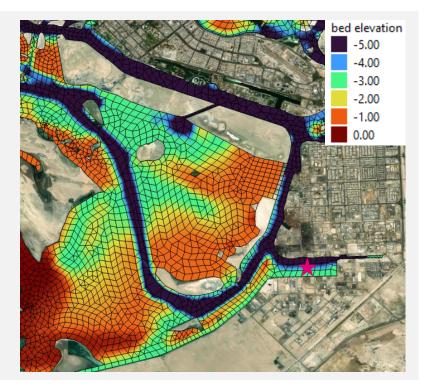
Abu Dhabi near shore waters

- Mussafah Channel deep water channel providing access to Mussafah Industrial Area and ICAD I, II, III
- There are several industrial discharges into Mussafah Channel
- The Industrial Effluent Treatment Plant (IETP) services the Mussafah Industrial District and contributes to excess nutrient loads.



Abu Dhabi near shore waters

- Mussafah Channel deep water channel providing access to Mussafah Industrial Area and ICAD I, II, III
- There are several industrial discharges into Mussafah Channel
- The Industrial Effluent Treatment Plant (IETP) services the Mussafah Industrial District and contributes to excess nutrient loads.
- Nearby marine protected area

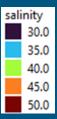


Scenario 1 - Remove discharge

• Removed the industrial discharge from Mussafah Channel – compete re-use of industrial discharges.

Impacts

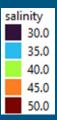
- Removed the low salinity inflow (impacting salinity and stratification)
- Reduced the nutrients into surrounding environment
 - Total nitrogen reduced
- Dissolved oxygen decrease in the near field
 - Reduced mixing without discharge and removal of the higher DO in discharge water


Map outputs – salinity (instantaneous)

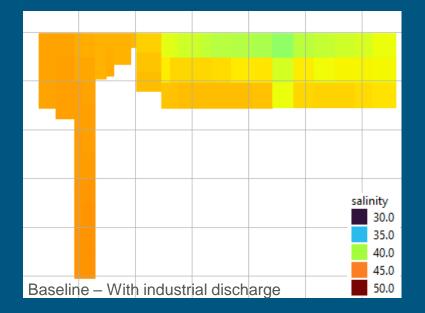
Baseline - With industrial discharge

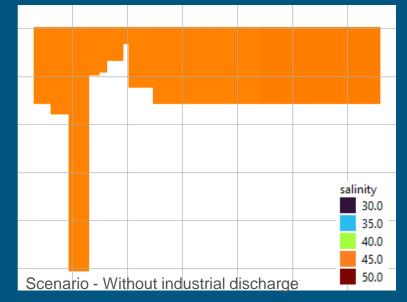
Scenario - Without industrial discharge

Salinity concentration (g/L) - near surface (0-2m from surface)


Map outputs – salinity (instantaneous)

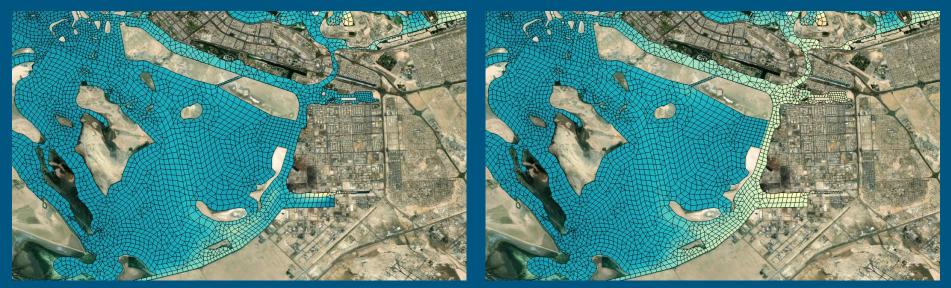
Baseline - With industrial discharge

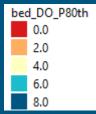

Scenario - Without industrial discharge



Salinity concentration (g/L) - near surface (0-2m from surface)

Curtain plots – salinity (instantaneous)

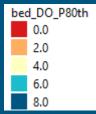



Salinity concentration (g/L)

Map percentile plots – dissolved oxygen (12 months)

Baseline - With industrial discharge

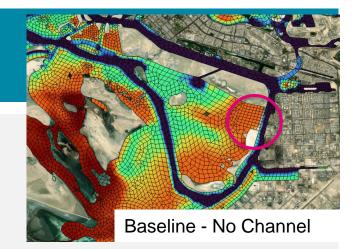
Scenario – Without industrial discharge

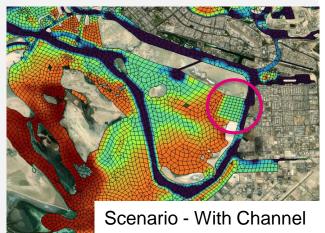

Dissolved oxygen (mg/L) - 80th percentile near bed (0-2m from bed)

Map percentile plots – dissolved oxygen (12 months)

Baseline - With industrial discharge

Scenario – Without industrial discharge


Dissolved oxygen (mg/L) - 80th percentile near bed (0-2m from bed)


Scenario 2 - Additional channel to improve flushing

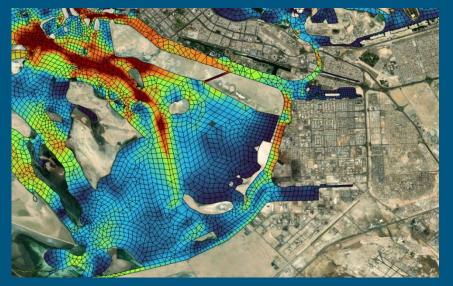
 Dredged channel to increase flushing of Mussafah Channel

Impacts

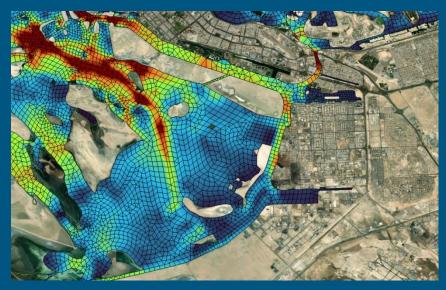
- Changes to mesh to simulation opening of channel
- Bathymetry estimated from satellite imagery
- Flow patterns and dispersal of nutrients changed

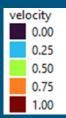
Scenario 2 - Additional channel to improve flushing

2020

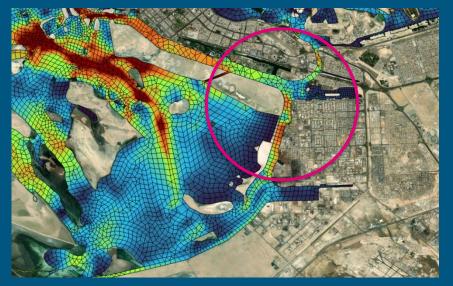


2021



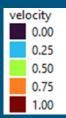

Map plots – velocity

Baseline - Without channel



Scenario - With channel

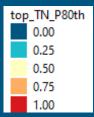
Velocity (m/s) – near surface (0-2m from surface)


Map plots – velocity

Baseline - Without channel

Scenario - With channel

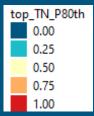
Velocity (m/s) – near surface (0-2m from surface)


Map percentile plots – total nitrogen (12 months)

Baseline - Without channel

Scenario - With channel

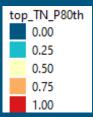
Total nitrogen (mg/L) - 80th percentile near bed (0-2m from bed)


Map percentile plots – total nitrogen

Baseline - Without channel

Scenario - With channel

Total nitrogen (mg/L) - 80th percentile near bed (0-2m from bed)


Map percentile plots – total nitrogen

Without channel

With channel

Total nitrogen (mg/L) - 80th percentile near bed (0-2m from bed)

Summary

Numerical model can be used to:

- Inform sustainable management practices
- Highlight potential benefits and risks
- Make decisions that improve water quality outcomes

Next up:

• Using numerical models to assess implications of sediment transport

