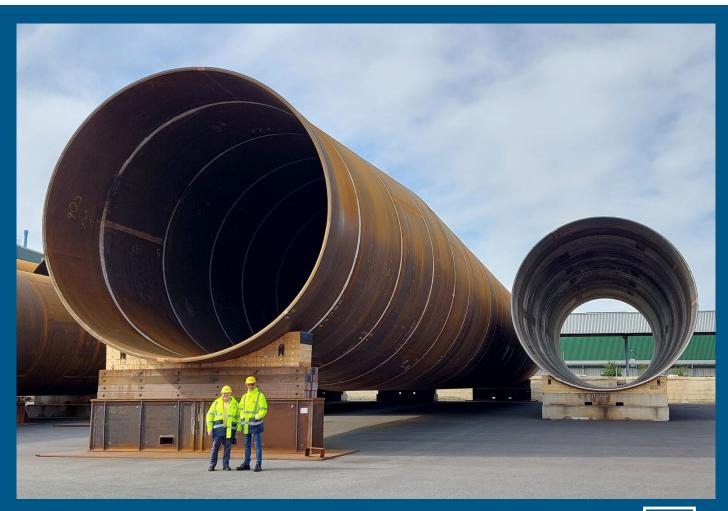
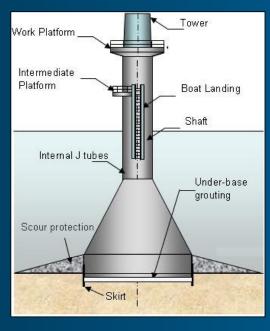

PRESENTATION


August 2023

MONOPILES

JACKETS

Water depth: 40-80 *Diameter:* 0.8-3.0 m



Foundation concepts

GRAVITY BASED STRUCTURES (GBS)

Water depth: <40 m Diameter: 6-*30 m*

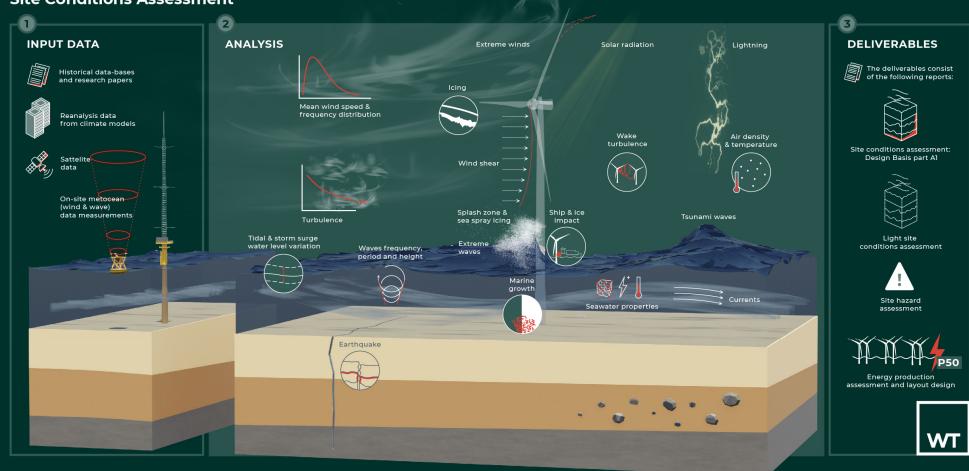
FOUNDATION DESIGN

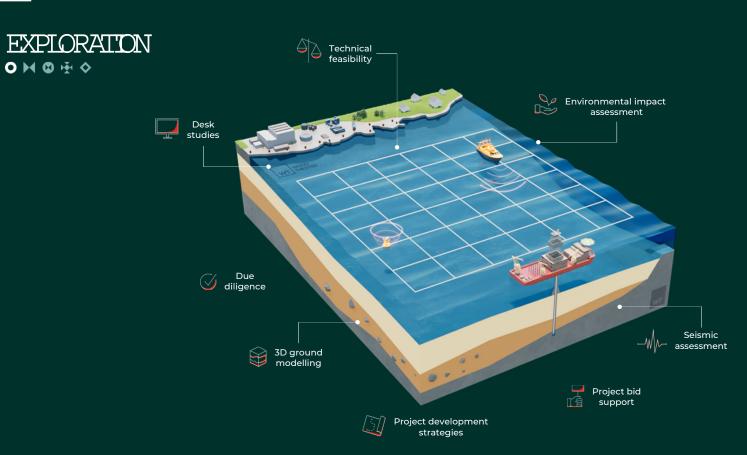
Floating Substructures and Anchors

TENSION-LE	EG PLATFORM	SEMI-SUB	MERSIBLE	SPAR BUOY			
Pros	Pros Cons		Cons	Pros	Cons		
Limited motion of floater and turbine Allows for submerged platform with little wave loading Simple floater construction Small seabed footprint	Inherently unstable without mooring in case of anchor failure Not suited for high current speeds Not suitable for shallow water or large water level variation Relatively high OPEX for hull-tendon connection	Assembly onshore or in dry-dock Suitable for most water depths depending on mooring configuration Potential to use a concrete hull, allowing for increased local content	Sensitive to wave loading Relatively complex floater structure Large motions within anchor spread	Inherently stable, also without mooring Simple floater structure Limited motion of turbine	Large water depth (typically >100m) required - both in-place and during turbine installation Some motions within anchor spread		

FOUNDATION DESIGN

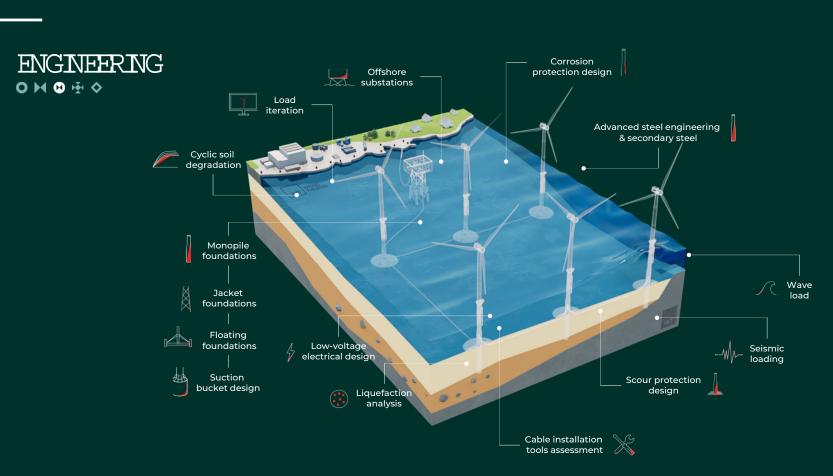
Floating Substructures and Anchors


DRAG ANCHOR / DRAG-EMBEDDED PLATE ANCHOR							
Pros	Cons						
Off-the-shelf solution Empirical design approach - limited design & SI costs Installation spread – only anchor handler tug required	Inaccuracy with positioning / drag – additional mooring chain required Empirical design approach – high proof load required on site						

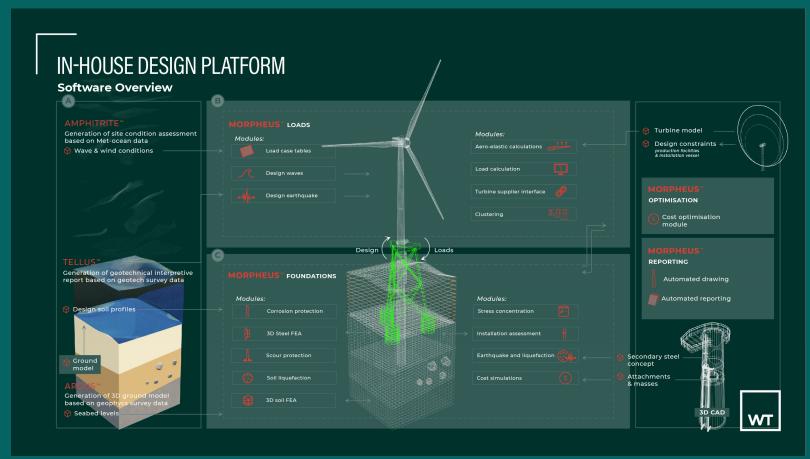

SUCTION ANCHOR							
Pros	Cons						
Accurate positioning of anchor No proof loading required Allows for shared anchor solution	Relatively high CAPEX for anchor Installation spread – crane vessel required Sensitive to scour						

DRIVEN PILE ANCHOR							
Pros	Cons						
\$ Relatively low CAPEX No proof loading required	Decommissioning Installation spread - crane vessel required						
	Relatively deep embedment - not suited for shallow bedrock						

OFFSHORE ENVIRONMENT


Site Conditions Assessment

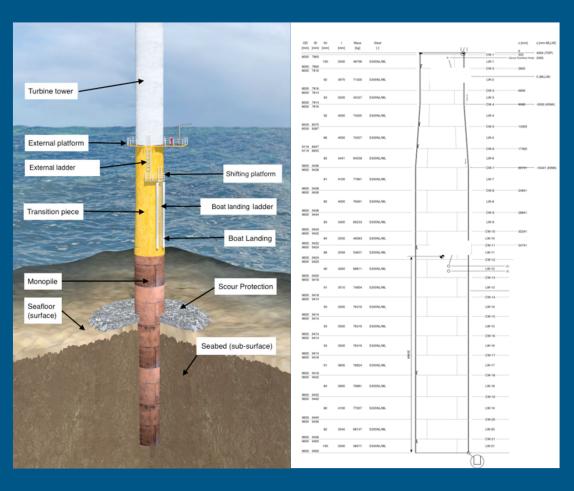
Project Exploration is defined as a phase where initial engineering works is performed. The boundary conditions (e.g. wind, wave, geology, etc.) of the project site are investigated and critically reviewed. This identifies risks and hazards that may be potential threats to the project. Wood Thilsted has wide experience in evaluating, planning and undertaking high-quality engineering assessments.



Wood Thilsted deliver cost-effective foundation designs for offshore wind projects through our holistic approach to design – understanding all the inputs to the design and supply chain constraints results in efficient structural design and project cost savings.

Many of the worlds largest offshore wind farms are currently being designed by Wood Thilsted.

WHATMAKES US UN QUE? OUR SOFTWARE


WT has highly developed design processes for substructure and foundation design.

Our software platform is a comprehensive tailor-made tool developed specifically for offshore wind foundations, including MPs and Jackets.

It includes modules for efficient site characterisation (wind, wave, soil etc.), for load assessment, structural design, optimization and for reporting.

KEYDESIGN CONSIDERATIONS

- Ultimate Limit State (ULS)
- Fatigue Limit State (FLS)
- Natural Frequency Analysis (NFA)
- Accidental Limit State (ALS)
- Service Limit State (SLS)
- Corrosion Protection (CP)
- Secondary Steel (SS)
- Integrated Load Analysis (ILA)

EXAMPLEOFAHCHLEVELLCT

DLC Table [IEC 61400-3-1]

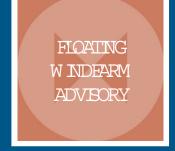
	DLC	DLC Description	Wind speeds considered	Wind model	Sea State Model	Water level	Current model	Wind Wave misalignment	Yaw misalignment	Partial safety factor for Ultimate design load assessment	No. Combinations
Fatigue	1.2	Power production	[Vin:Vout] 3:1:31	NTM (operating in Fatigue) - m=5	NSS	SWL_NSS_FLS	CS_NSS	MIS, MUL -30 ; 30 ; 60	-8°; 0°; +8°	1.35	5220
	6.4	Parked (standstill or idling) outside WTG operation wind speed range	[< Vin] and [Vout:Vhwo] 1:1:2 and 32:1:34	NTM (operating in Fatigue) - m=5	NSS	SWL_NSS_FLS	CS_NSS	MIS, MUL -30 ; 30 ; 60	-8°; 0; +8°	1.35	900
	7.2	parked and fault conditions (WTG yaw angle is aligned with wind direction)	[Vin:Vout] 3:1:31	NTM (operating in Fatigue) - m=5	NSS	SWL_NSS_FLS	CS_NSS	MIS, MUL -30 ; 30 ; 60	-8°; 0; +8°	1.35	5220
Ultimate	1.4	Power production + gust + wind direction change	Vr +/-2m/s 9, 11, 13	ECD	NSSULS	SWL_NSS_ULS	CS_NSS	COD, UNI	0°	1.35	9
	1.6	Power Production + severe sea state + Normal current & water levels	[Vin:Vout] 3:1:31	NTM (operating in Ultimate)	SSS + SWH	SWLR_SSS	CS_NSS	MIS, MUL limited to -30°; 0°; +30°	-8°; 0°; +8°	1.35	261
	6.1	Idling + 50 yr wind, waves, current, water levels	V50 50.9	EWM	ESS50 + EWH50	SWLR_ESS50	CS_ESS	MIS, MUL limited to -30°; 0°; +30°	-8°; 0°; +8°	1.35	108
	1.1	Idling + 500yr cyclone wind, waves, current, water levels	V500 cyclone 64.9	EWM	ESS500 + EWH500	SWLR_ESS500	CS_ESS	MIS, MUL limited to -30°; 0°; +30°	-8°; 0°; +8°	1.0	108
	I.1-PLUNG	Idling + 500yr cyclone wind, waves + plunging breaker wave (a slamming force is added), current, water levels	V500 cyclone 64.9	EWM	ESS500 + EWH500	SWLR_ESS500	CS_ESS	COD, UNI	-8°; 0°; +8°	1.0	36

11862

OUR EXPERIENCE

With our unique experience and track-record in offshore wind we deliver the largest and most complex offshore wind projects globally, annually delivering the detailed foundation design of 3 GW worldwide.

WHATSERVICES DOWEOFFER?



OW NERS ENGINEERING

THANK YOU

Wood Thilsted Partners 91-94 Lower Marsh Waterloo

www.woodthilsted.com