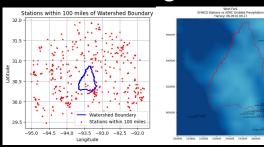
HEC-Commander Repository

Open Source Notebooks:

HEC-Commander Repository (GitHub)

Blogs

ChatGPT Examples and GPT's



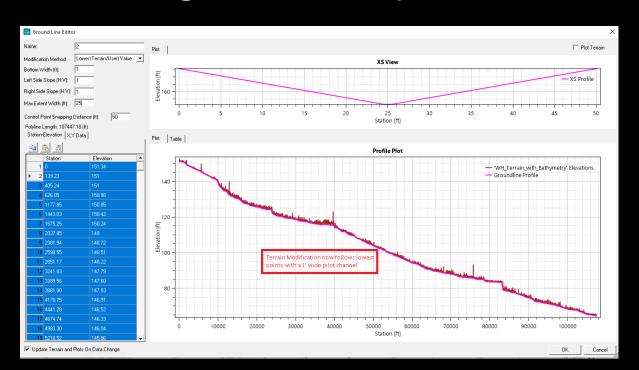
Miscellaneous H&H Tools related to LWI Region 4 Efforts

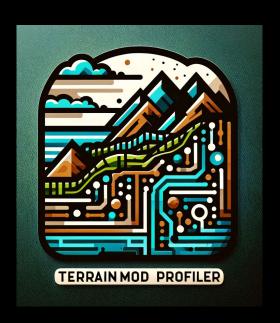
Al Assistants (GPT's) for H&H Workflows

- Interact with HEC-RAS Data Formats:
 - HDF (h5py)
 - DSS (pydsstools)
- Hydromet and USGS Data
 - Access NHDPlus, USGS 3DEP, NLCD via API (hyriver)
 - Terrain Processing
 - Geospatial Data Analysis Tasks
 - Postprocessing for Mapping
- HEC-RAS Forum Assistant
 - Answers reinforced with RAS Solution Transcripts and Kleinschmidt Forum Posts

Table of GPT's and ChatGPT Examples:									
Logo	Number	Name	Description	Read More Link	GPT Link				
L L M	29	LLM API Library Assistant	The LLM API Library Assistant provides tools for interfacing with various large language model APIs. It helps users integrate LLM functionalities into their applications, facilitating tasks such as text generation, summarization, and sentiment analysis.	Read More	GPT Link				
USGS AT ASSISTBAT	28	USGS API Assistant	This assistant interfaces with various USGS APIs to retrieve and analyze hydrological and geological data. It simplifies accessing datasets such as streamflow records, water quality measurements, and topographic information.	Read More	GPT Link				
	27	Python HDF File Assistant	The Python HDF File Assistant facilitates working with HDF5 files, which are commonly used for storing large datasets. It provides functionalities for reading, writing, and querying HDF5 data.	Read More	GPT Link				
	26	Python Raster Array Assistant	This tool assists with the manipulation and analysis of raster data using Python arrays. It supports tasks such as resampling, reclassification, and statistical analysis of raster datasets.	Read More	GPT Link				
1039	25	DSS Python Assistant	The DSS Python Assistant aids in manipulating and analyzing data stored in the HEC-DSS format, providing Python tools for reading, writing, and visualizing time-series and spatial data.	Read More	GPT Link				
	24	Shapefile Simplifier for Geospatial Processing	This assistant focuses on simplifying shapefiles, making them more manageable for geospatial processing tasks. It helps reduce file size and complexity while preserving essential spatial information.	Read More	GPT Link				
*	23	HEC-RAS Forum Assistant	The HEC-RAS Forum Assistant helps users navigate and extract valuable information from HEC-RAS forum discussions, offering solutions to common modeling problems and enhancing the efficiency of using the HEC-RAS software.	Read More	GPT Link				
	22	Hydroclimate Data Tools with HyRiver	This tool integrates HyRiver, a suite of Python libraries for accessing and analyzing hydroclimate data, providing capabilities for retrieving and processing large-scale climate and hydrological datasets.	Read More	GPT Link				
	21	Geospatial Python Notebook Assistant using WhiteboxTools	This assistant leverages the WhiteboxTools library within a geospatial Python notebook, offering functionalities for terrain analysis, hydrological modeling, and more. It is designed to support geospatial data processing and analysis workflows.	Read More	GPT Link				

HEC-RAS Python Tools


- RAS-Commander
 - HEC-RAS Calibration and Validation
 - Parallelization for Multiple Runs
- DSS-Commander
 - Visualizing DSS Results
 - Calculating Calibration Statistics
- Atlas 14 Data Variance Analysis
- Soil Stats Tool
 - May be obsolete with 6.5
- Terrain Modification Profiler


Table of GPT's and ChatGPT Examples:

Logo	Number	Name	Description	Read More Link	GPT Link
LLM	29	LLM API Library Assistant	The LLM API Library Assistant provides tools for interfacing with various large language model APIs. It helps users integrate LLM functionalities into their applications, facilitating tasks such as text generation, summarization, and sentiment analysis.	Read More	GPT Link
USGS AF ASSITIANT	28	USGS API Assistant	This assistant interfaces with various USGS APIs to retrieve and analyze hydrological and geological data. It simplifies accessing datasets such as streamflow records, water quality measurements, and topographic information.	Read More	GPT Link
	27	Python HDF File Assistant	The Python HDF File Assistant facilitates working with HDF5 files, which are commonly used for storing large datasets. It provides functionalities for reading, writing, and querying HDF5 data.	Read More	GPT Link
	26	Python Raster Array Assistant	This tool assists with the manipulation and analysis of raster data using Python arrays. It supports tasks such as resampling, reclassification, and statistical analysis of raster datasets.	Read More	GPT Link
	25	DSS Python Assistant	The DSS Python Assistant aids in manipulating and analyzing data stored in the HEC-DSS format, providing Python tools for reading, writing, and visualizing time-series and spatial data.	Read More	GPT Link
	24	Shapefile Simplifier for Geospatial Processing	This assistant focuses on simplifying shapefiles, making them more manageable for geospatial processing tasks. It helps reduce file size and complexity while preserving essential spatial information.	Read More	GPT Link
	23	HEC-RAS Forum Assistant	The HEC-RAS Forum Assistant helps users navigate and extract valuable information from HEC-RAS forum discussions, offering solutions to common modeling problems and enhancing the efficiency of using the HEC-RAS software.	Read More	GPT Link
	22	Hydroclimate Data Tools with HyRiver	This tool integrates HyRiver, a suite of Python libraries for accessing and analyzing hydroclimate data, providing capabilities for retrieving and processing large-scale climate and hydrological datasets.	Read More	GPT Link
	21	Geospatial Python Notebook Assistant using WhiteboxTools	This assistant leverages the WhiteboxTools library within a geospatial Python notebook, offering functionalities for terrain analysis, hydrological modeling, and more. It is designed to support geospatial data processing and analysis workflows.	Read More	GPT Link

Terrain Modification Profiler

- Helps create pilot channels in LIDAR-defined channels with tree cover (noisy profiles)
- Uses channel centerlines and your RAS terrain to automate generation of profiles

Al Coding in Local Notebooks

Best in Class:

Cursor, an Al-Powered VS Code fork

Most powerful way to bring your code local and continue with small iterations, debugging and improving scripts.

With recent gpt-4o-mini and Llama-3.1 models, open-source options are now available for very low cost or free.

More in-depth AI-Assisted coding and GPT building will be covered in the Python Masterclass and future AI Applications premium webinars

```
NameError
                         Traceback (most recent call last)
  Cell In[2], line 7
    4 import matplotlib.pyplot as plt
    6 # Create a GeoDataFrame for the bounding box
  ----> 7 bounding_box_geo_data_frame = gpd.GeoDataFrame({"geometry":
  [bounding_box]}, crs="EPSG:4326")
    9 # Plot the GeoDataFrame
    10 bounding_box_geo_data_frame.plot()
  NameError: name 'bounding_box' is not defined
  Ctrl+d Accept Accept & Run Ctrl+ Shift+K
import geopandas as gpd
import matplotlib.pyplot as plt
from shapely.geometry import box
bounding box = box(
    longitude - bounding box_size_miles * 0.0144927536231884, # 1 mile in degrees longitude
    latitude - bounding box size miles * 0.0144927536231884, # 1 mile in degrees latitude
    longitude + bounding box size miles * 0.0144927536231884,
    latitude + bounding box size miles * 0.0144927536231884
bounding box geo data frame = gpd.GeoDataFrame({"geometry": [bounding box]}, crs="EPSG:4326")
print("bounding box geo data frame")
display(bounding_box_geo_data_frame)
bounding_box_geo_data_frame.plot()
plt.show()
```

∱ BRUNNER-RUNNER RUN STATUS HELP!

Pick a model on hec-06 C:\AutoRAS_Run

Give your run suite a unique name

SST_LC_all_runs

min # cores per run max # cores per run 1 -

RUN 35 PLANS

Full Momentum Episode 33: The Future of ... (00:00) Introduction, (0:35) Special Guest Introduction, (1:00) Introduce the Main Topic- The Future of leveraging...