Australian Water School

# Advancements in Bridge Scour Assessment

OOO Federal Highway Administration **RESOURCE CENTER** Office of Innovation Implementation

U.S. Department of Transportation **Federal Highway Administration** 



Image Source: Casey Krame



#### **Overview**

- Resources for bridge scour analyses
- Bridge scour components
- Advancements in 2D hydraulic modeling
- Worst case scour concept
- Bridge scour assessment key considerations
- Common pitfalls in computing bridge scour
- Consistent method for computing bridge scour



Image Source: Casey Kramer

### **Resources for Bridge Scour Analyses**

- <u>HEC-18</u> (2012 5<sup>th</sup> Edition) Evaluating Scour at Bridges
- <u>HEC-20</u> (2012 4<sup>th</sup> Edition) Stream Stability at Highway Structures
- HEC-23 Bridge Scour and Stream Instability Countermeasures (2009 3<sup>rd</sup> Edition) (<u>Volume 1</u> and <u>Volume 2</u>)
- <u>HDS-7</u> Hydraulic Design of Safe Bridges (2012)
- <u>Austroads</u> (2019)
- Two-Dimensional Hydraulic Modeling for Highways in the River Environment – <u>Reference Document</u> (2019)
- FHWA Bridge Scour Workshop (2022)
- WSDOT <u>Scour Training</u> (2023)

# Bridge Scour Components – <u>Without</u> Potential of Lateral Migration



Image Sources: WSDOT

#### Australian Water School – Advancements in Bridge Scour Assessment

# Bridge Scour Components – <u>With</u> Potential of Lateral Migration



## **Advancements in 2D Hydraulic Modeling**

| Hydraulic Variables                            | 1D Modeling                                            | 2D Modeling                                                         |
|------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------|
| Flow direction                                 | Assumed by user                                        | Computed                                                            |
| Flow paths                                     | Assumed by user                                        | Computed                                                            |
| Land use roughness                             | Assumed constant between cross sections                | Roughness values at<br>individual elements used in<br>computations. |
| Ineffective flow areas                         | Assumed by user                                        | Computed                                                            |
| Flow contraction and expansion through bridges | Assumed by user                                        | Computed                                                            |
| Flow velocity                                  | Averaged at each cross section                         | Computed at each element                                            |
| Flow distribution                              | Approximated based on conveyance                       | <b>Computed</b> based on continuity and momentum                    |
| Water Surface Elevation                        | Assumed constant across<br>entire cross section        | Computed at each element                                            |
| Flow splits                                    | Based on <b>Averaged</b><br>constant Energy Grade Line | <b>Computed</b> based on continuity and momentum                    |

#### **Advancements in 2D Hydraulic Modeling**



Slide

7

#### **Advancements in 2D Hydraulic Modeling**



https://www.fhwa.dot.gov/engineering/hydraulics/pubs/hif19061.pdf

https://www.trb.org/Publications/Blurbs/183186.aspx

8

## Worst Case Scour Concept

- Austroads "The aim of bridge design should identify the flood event that produces the highest velocities and worst case."
- FHWA Worst Case Scour Depth "The conditions (e.g., discharge, velocity, depth, tailwater, geometry, orientation, type of foundation, etc.) that would produce the maximum scour depth at a particular foundation element."

#### • AASHTO

- Scour Design Flood "A discharge of an annual probability of exceedance selected to estimate scour for the design and evaluation of the bridge foundation for strength, service, and Extreme Event I and II limit state events."
- Scour Check Flood "A discharge of an annual probability of exceedance selected to estimate scour for an evaluation of the bridge foundation for Extreme Event II limit state"



#### **Worst Case Scour Concept**



Image Source: FHWA

## **Bridge Scour Assessment Key Considerations**

- 2D hydraulic model
  - Sufficiently refined mesh and results
  - Possible worst case flood events
- Bed material gradation and sample locations
- Long term degradation and stream stability assessment
- Extraction of hydraulic variables (location, type, and adjustments for skew)
- Determination of live-bed vs. clear water scour



#### **Approach and Contracted Sections**



## **Bridge Scour Assessment Key Considerations**

- Pier scour
  - Pier dimensions, orientation and angle of attack
  - Pier configuration and complex pier geometry
  - Location where depth and velocity values were extracted
  - Location of piers and potential for channel to migrate
- Abutment scour
  - Location of abutments relative to main channel
  - Channel migration potential
  - Application of NCHRP Method, Scour Condition A or B
  - Application of abutment scour depth to determine the scour elevation
- Total scour results review (Interdisciplinary review)



Image Sources: Casey Krame

#### **Velocity and Depth at Piers**



## **Common pitfalls in computing bridge scour**

- Assuming hydraulic modeling results are good (without review)
- Missing the worse case scour condition
- Incorrectly locating the approach section for contraction scour
- Incorrectly defining the width of flow transporting sediment
- Misinterpreting a live-bed vs. clear water scour condition

## **Common pitfalls in computing bridge scour**

- Mis-applying tributary inflow immediately upstream of bridge
- Using maximum hydraulic values for contraction scour rather than averaged values
- Not considering lateral migration potential
- Using insufficient or inaccurate gradation information
- Incorrectly interpreting scour depths to elevations

## **Consistent Method for Computing Bridge Scour**

- SMS Bridge Scour Tool
- FHWA Hydraulic Toolbox



#### FHWA Hydraulic Toolbox Version 5.3.0



### **Bridge Scour Tool in SMS**

#### **Overview of steps**:

- Create a Bridge Scour coverage in SMS
- Define the bridge scour arcs
- Define Bridge Scour coverage properties
- Compute and export hydraulic parameters to the Hydraulic Toolbox

#### **Bridge Scour Arcs**



#### **Bridge Scour Arcs**



# **Bridge Scour Coverage Properties**

- Approach arc attributes
  - Channel bed gradation
- Contraction arc attributes
  - Channel bed gradation
- Pier arc attributes
  - Pier shape and size
  - Bed condition
  - Elevation reference
- Abutment arc attributes
  - Abutment type

| S Bridge Scour Coverage Properties                                                                   |  |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Input                                                                                                |  |  |  |  |  |  |  |  |
| Mesh: Mesh Existing Conditions                                                                       |  |  |  |  |  |  |  |  |
| Q10 EC<br>Q50 EC<br>Q500 EC<br>Q500 EC                                                               |  |  |  |  |  |  |  |  |
|                                                                                                      |  |  |  |  |  |  |  |  |
| T Options Critical Velocity View Values                                                              |  |  |  |  |  |  |  |  |
| Bridge Deck Select 3D Bridge Main                                                                    |  |  |  |  |  |  |  |  |
| Auto compute bridge starting station on export                                                       |  |  |  |  |  |  |  |  |
| Specify bridge starting station: 0 Compute                                                           |  |  |  |  |  |  |  |  |
| Manually enter the bridge deck geometry Define                                                       |  |  |  |  |  |  |  |  |
| Upstream offset for pier hydraulics 0 ft                                                             |  |  |  |  |  |  |  |  |
| Model Specifications                                                                                 |  |  |  |  |  |  |  |  |
| Contraction Scour Variable Extraction Approach: Bank Width Batios                                    |  |  |  |  |  |  |  |  |
| NCHRP Abutment Scour Condition                                                                       |  |  |  |  |  |  |  |  |
| Left Abutment: Scour Condition a (Main Channel) V Right Abutment: Scour Condition a (Main Channel) V |  |  |  |  |  |  |  |  |
| Output                                                                                               |  |  |  |  |  |  |  |  |
| Browse C:/MiddleForkClarkRiverScour.hyd                                                              |  |  |  |  |  |  |  |  |
| Export Hydraulic Toolbox File Launch Hydraulic Toolbox                                               |  |  |  |  |  |  |  |  |
| Utilities                                                                                            |  |  |  |  |  |  |  |  |
| Edit Default Options Delete Generated Arcs                                                           |  |  |  |  |  |  |  |  |
| Help OK Cancel                                                                                       |  |  |  |  |  |  |  |  |

Image Source: FHWA

# **Hydraulic Toolbox Export**

- Average hydraulic parameters exported (main channel & overbank)
- Velocity and depth at maximum unit discharge location are extracted for pier scour (local values can still be used)
- Pressure flow hydraulic parameters exported
- Bridge (contracted) section and pier geometry are adjusted for skew
- Bridge deck and pier geometry are exported
- Review all values
- Verify design angle of attack
- Long Term Degradation values are not included and need to be added manually (use HEC-20 or other available resources)

#### Hydraulic Toolbox Scour Summary Table

|                                              | _           |                 |            |          |                       |                 | Bridge Scour Plot (Q100 Proposed)                                                                                |
|----------------------------------------------|-------------|-----------------|------------|----------|-----------------------|-----------------|------------------------------------------------------------------------------------------------------------------|
| 🔳 Bridge Scour Summary Table                 |             |                 |            |          |                       |                 | 🔲 Bridge Deck 💻 Left Abutment 🔳 Left Abutment Scour 💻 Right Abutment 🔀 Right Abutment Scour 🕂 Piers 💿 Pier Scour |
|                                              |             |                 |            |          |                       |                 | 🔲 Bridge Cross-Section 🔼 WSE 🔽 Long-term Degradation 💽 Contraction Scour 🛄 Total Scour                           |
| Parameter                                    | Q50 Propo   | Q100 Prop       | Q500 Prop. | Units    | Notes                 |                 | Lateral potential limits of contraction and abutment scour                                                       |
| Contraction Scour                            |             | <b>v</b>        |            |          |                       |                 |                                                                                                                  |
| Selected Contraction Computation Method      | Clear-Wate. | Clear-Wate.     | Clear-Wate | ·        |                       | 5675-           |                                                                                                                  |
| Applied Contraction Scour Depth              | 3.18        | 4.11            | 4.11       | ft       | Q50 Proposed 190 (    | 0010            |                                                                                                                  |
| Clear Water Contraction Scour Depth          | 5.57        | 7.44            | 7.44       | ft       | Item bolded is the g  |                 |                                                                                                                  |
| Live Bed Contraction Scour Depth             | 3.18        | 4.11            | 4.11       | ft       | Item bolded is the g  | 5670-           |                                                                                                                  |
| Streambed Thalweg Elevation                  | 5658.39     | 5658.39         | 5658.39    | ft       |                       |                 |                                                                                                                  |
| Applied Contraction Scour Elevation with LTD | 5655.21     | 5654.28         | 5654.28    | ft       |                       |                 |                                                                                                                  |
| Approach Cross-Section                       |             |                 |            |          |                       | 5665 -          | .65-                                                                                                             |
| Local Scour at Piers                         |             |                 |            |          |                       |                 |                                                                                                                  |
| Plot Pier Scour                              |             |                 |            |          |                       |                 |                                                                                                                  |
| Piers                                        |             |                 |            |          |                       | 5660 -          |                                                                                                                  |
| Pier Name                                    | Pier 1      | Pier 1          | Pier 1     |          |                       |                 |                                                                                                                  |
| Pier Computation Method                      | HEC-18      | HEC-18          | HEC-18     |          |                       | ₽               |                                                                                                                  |
| Pier Scour Depth                             | 6.97        | 7.95            | 7.95       | ft       |                       | 5655 -          | .55-                                                                                                             |
| Max Flow Depth including Pier Scour          | 19.12       | 22.66           | 22.66      | ft       | :                     | tio<br>I        |                                                                                                                  |
| Total Scour at Pier                          | 6.97        | 7.95            | 7.95       | ft       |                       | eva             |                                                                                                                  |
| Streambed Thalweg Elevation                  | 5658.39     | 5658.39         | 5658.39    | ft       | i                     | <u>⊞</u> 5650 - | 50—                                                                                                              |
| Total Scour Elevation at Pier                | 5648.24     | 5646.32         | 5646.32    | ft       |                       |                 |                                                                                                                  |
| Piers                                        |             |                 |            |          |                       |                 |                                                                                                                  |
| Pier Name                                    | Pier 2      | Pier 2          | Pier 2     |          |                       | 5645-           |                                                                                                                  |
| Pier Computation Method                      | HEC-18      | HEC-18          | HEC-18     |          |                       |                 |                                                                                                                  |
| Pier Scour Depth                             | 14.82       | 15.49           | 15.49      | ft       |                       |                 |                                                                                                                  |
| Max Flow Depth including Pier Scour          | 26.65       | 29.83           | 29.83      | ft       |                       | 5640-           |                                                                                                                  |
| Total Scour at Pier                          | 14.82       | 15.49           | 15.49      | ft       |                       |                 |                                                                                                                  |
| Streambed Thalweg Elevation                  | 5658.39     | 5658.39         | 5658.39    | ft       |                       |                 |                                                                                                                  |
| Total Scour Elevation at Pier                | 5640.39     | 5638.78         | 5638.78    | ft       |                       | 5635-           | 35-                                                                                                              |
| Local Scour at Abutments                     |             |                 |            |          |                       |                 |                                                                                                                  |
| Left Abutment                                |             |                 |            |          |                       | 5000            |                                                                                                                  |
| Plot Left Abutment Scour                     |             | <b>v</b>        |            |          |                       | 5630-           | 30 — Left Bank Right Bank                                                                                        |
| Abutment Scour Depth                         | 11.49       | 13.37           | 13.37      | ft       | NCHRP Method: Sco     |                 |                                                                                                                  |
| Max Flow Depth including Abutment Scour      | 16.45       | 20.02           | 20.02      | ft       | Including the long-te | 0               | 0 50 100 150 200 250                                                                                             |
| Total Scour at Abutment                      | 11.49       | 13.37           | 13.37      | ft       |                       |                 | Station (#)                                                                                                      |
| Local Streambed Elevation at Abutment        | 5661.13     | 5661.13         | 5661.13    | ft       |                       |                 | Station (it)                                                                                                     |
| Total Scour Elevation at Abutment            | 5650.05     | 5647.86         | 5647.86    | ft       |                       |                 |                                                                                                                  |
| Right Abutment                               |             |                 |            |          |                       |                 |                                                                                                                  |
| Plot Right Abutment Scour                    |             | ✓               |            |          |                       |                 |                                                                                                                  |
| Abutment Scour Depth                         | 9.92        | 12.08           | 12.08      | ft       | NCHRP Method: Scou    | ur Condition    | Jition A (in                                                                                                     |
| Max Flow Depth including Abutment Scour      | 16.45       | 20.02           | 20.02      | ft       | Including the long-te | rm scour dep    | ur depth                                                                                                         |
| T-1-1 C                                      | 0.00        | 13.00           | 10.00      | <u>م</u> |                       |                 | Slide                                                                                                            |
| Plot Cross Section                           | s Bar       | Plot Scour Dept | th         |          |                       | ОК              | ок <u>Cancel</u> 23                                                                                              |



#### THANK YOU!

#### Scott Hogan

FHWA Resource Center <u>Scott.hogan@dot.gov</u>

#### Casey Kramer

Natural Waters, LLC <u>ckramer@naturalwaters.design</u>