

Fish Passage and Fish Migration

Tim Marsden

Fish Migration

- Regular movements of freshwater fish between rivers, floodplains or the sea to breed and grow
- Critical for the survival of native fish populations.
- Most of Australia's rivers dry up to a series of waterholes between rains.
- The "boom and bust" cycle leads to many unique migratory patterns among our fish.

Fish migrate at all times of the year under many different flow conditions

Migratory Fish Species

Australasian Fish Passage Services

Life Stages That Migrate

- In Australia fish are moving at all life stages and sizes (7mm to **3000mm**)
- Adults are dispersing after spawning and juveniles are dispersing after hatching
- Need to know species are utilising a structure to determine what species will be catered for

All structures need to cater for all fish species and life stages

What is a Barrier

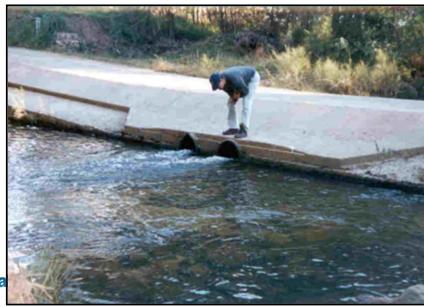
• Any structure the inhibits the movement of fish throughout a river system

Why are they Barriers

- Vertical drops greater than 100mm
- High velocities
- Excessive water turbulence
- Long swimming distance without resting
- Shallow water
- Reduced light levels

Passage Solutions – Elimination

- Barrier Elimination is always the best option
- Replacement of structure
 - Opens whole channel
 - Provides many passage paths
 - No entrance issues
 - Naturally roughened floor



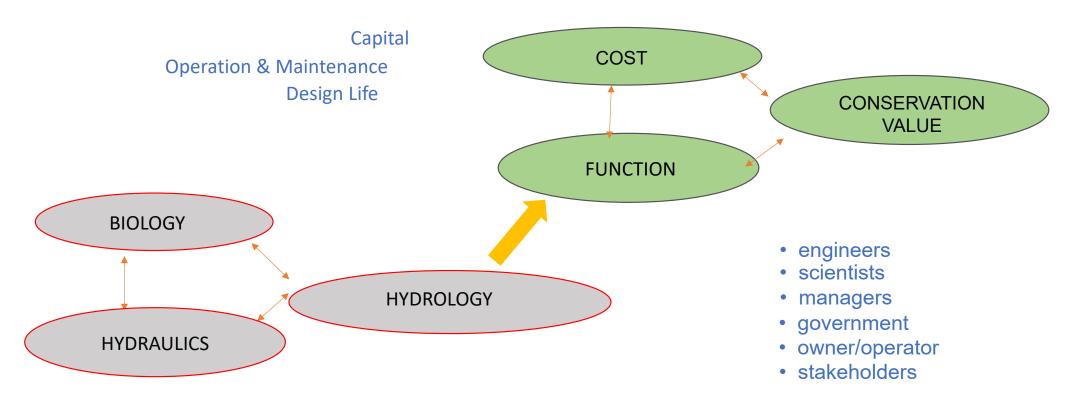
Passage Solutions – Best Practice Design

- Opens barrier to effective passage
 - Opens larger proportion of channel
 - Provides roughened floor for natural passage
 - Has low flow channel with natural bed
 - Provides roughened walls for surface species
 - Has low decks to drown out easily

Passage Solutions - Fishways

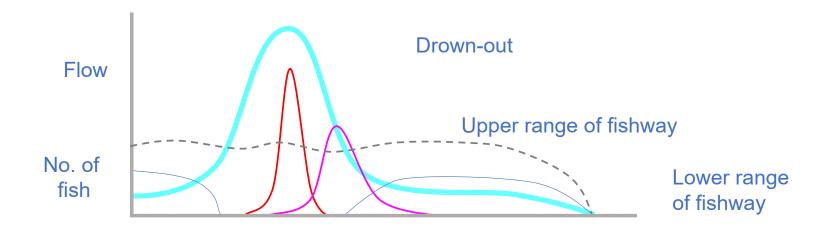
Cone Fishway to eliminate drops

Baffles to break up flow of straight walls


Bypass rock ramp fishway

Wide range of costs from Thousands to Millions

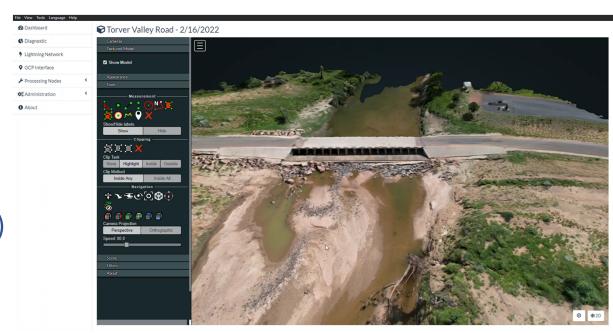
Fish Lift


Design Process – Function to Design

- the solution will be unique
- site-based decision / catchment vision

Design Process – Biology ← Hydrology

Function Design


2 fishways cheaper than 1

90% operation more functional than 95%

Design Process – Concept — Final Design

- 1. Team from the start: engineers, scientists, owners, operators
- 2. Hydrology & Biology
- 3. Site visit
 - In person virtual
- 4. Options Analysis (workshop/MCA)
- 5. Transparency of risk
- 6. Expectation and outcomes


- 1. Attracting fish to the fishway entrance
- 2. Passing fish safely through the fishway
- 3. Upstream and downstream

3D Print = Rapid Designing

- As each design unique, each solution unique
- Many combinations makes optioneering in CFD a long process
- 3D print and mini flume rapidly discard non-viable options
- Have limitations relating to the size and scale of the site

Conclusions

- 1. Fish passage an integral part of dam or weir design
- 2. Two components to design: attraction and passage
- 3. Teamwork engineers and biologists
 - from the business case to commissioning
- 4. Link hydrology & biology with objectives
- 5. Let function determine design
- 6. Transparency of risk

