

Climate change impacts on extreme event hydrology

Never Stand Still

Science

Climate Change Research Centre

Jason P. Evans

Jason.evans@unsw.edu.au

Outline

- How will climate change impact rainfall?
- How will different rainfall durations be impacted?
- Where in Australia will climate change impact rainfall?

How will climate change impact rainfall?

Never Stand Still

Science

Thermodynamics

As temperature goes up – saturation water vapour pressure goes up ~7%/K

Clausius-Clapeyron eqn

Extreme rain occurs when close to saturation.

Vertical lapse rate

If temperature increases but moisture stays the same – cloud base heights go up (lower chance of rain)

If temperature and moisture increase together – cloud base heights go down (higher chance of rain)

Vertical lapse rate

If temperature increases but moisture stays the same – cloud base heights go up (lower chance of rain)

If temperature and moisture increase together – cloud base heights go down (higher chance of rain)

Condensation bouyancy

Condensation in clouds releases heat, increasing buoyancy and hence updrafts.

For systems near saturation: higher temperature means more moisture, more condensation, more buoyancy, stronger updrafts, deeper convection, more rain.

Global circulation changes

The Hadley cell is expanding poleward – pushing the midlatitude storm tracks poleward

How will different rainfall durations be impacted?

Never Stand Still

Science

What about longer durations?

All these effects (other than global circulations changes) act on convective timescales (Instantaneous - 1 hour)

And convective space scales (100m - 1km)

Longer durations also require surrounding moist air masses to converge at the storm.

A few hours

Where in Australia will climate change impact rainfall?

Never Stand Still

Science

rainfall changes to far future

(2070-2099) minus (1976-2005)

 Evans, J. P., Di Virgilio, G., Hirsch, A. L., Hoffmann, P., Remedio, A. R., Ji, F., et al. (2020).
The CORDEX-Australasia ensemble: evaluation and future projections. Climate Dynamics. https://doi.org/10.1007/s00382-020-05459-0

Daily rainfall changes

(2060-2079) minus (1990-2010)

Annual 1 day max

Evans, J. P., Argueso, D., Olson, R., & Luca, A. D. (2017). Bias-corrected regional climate **Climate Change Research Centre** projections of extreme rainfall in south-east Australia. Theoretical and Applied Climatology, 130(3-4), 1085-1098. https://doi.org/10.1007/s00704-016-1949-9

Future sub-daily extreme precipitation?

- No robust assessment of future changes in sub-daily rainfall extremes over Australia at convective scale (~1km res)
- Early work over Sydney (with many caveats) found 3 hour 1% AEP increase ~40% by 2050 (~20%/K)

Climate Change Research Centre

Evans, J. P., & Argueso, D. (2015). WRF simulations of future changes in rainfall IFD curves over greater Sydney (pp. 33–38). Presented at the The Art and Science of Water - 36th Hydrology and Water Resources Symposium, HWRS 2015.

Future sub-daily extreme precipitation?

Over the USA extreme hourly precipitation has been found

- to increase 50% or more in some regions
- Exceedance probabilities increase up to 400%
- For some storm types increases in precipitation rate and area under heavy precip results in 80% increases in storm volume

Prein, A. F., Liu, C., Ikeda, K., Trier, S. B., Rasmussen, R. M., Holland, G. J., & Clark, M. P. (2017). Increased rainfall volume from future convective storms in the US. Nature Climate Change, 7(12), 880–884. https://doi.org/10.1038/s41558-017-0007-7

50 100 150 200 250 300 350 400 4 Relative changes in exceedance probability (%)

Climate Change Research Centre

Prein, A. F., Rasmussen, R. M., Ikeda, K., Liu, C., Clark, M. P., & Holland, G. J. (2017). The future intensification of hourly precipitation extremes. Nature Climate Change, 7(1), 48–52. https://doi.org/10.1038/nclimate3168

Winter

Summe

Never Stand Still

Summary

Science Climate Change Research Centre

Summary

As the atmosphere warms many aspects of the thermodynamics & circulation of the atmosphere change.

This will impact precipitation **everywhere**.

Common future changes include:

- Increases in daily precipitation extremes
- Increases in the length of dry periods between storms (antecedent conditions)
- Larger increases in sub-daily precipitation extremes than daily (requires more work to quantify robustly)

