

Physical model testing of breakwater design

11%

Carrier Contraction (1)

Breakwater design using XBlocPlus – 1.2 m wave flume

Testing of existing vs improved geotextile groyne design

UNSW Water Research Laboratory Wave Period: 12 s Wave Height: 1.8 m Water Level: 1.55 m AHD

Existing Groyne

Wave deflector being used to reduce overtopping under bore wave condition

1 1

Testing wave pumping forces

Short crested waves - wave basin

-

Water Research Laboratory School of Civil and Environmental Engineering

Real-time video monitoring of wave overtopping

Modelling wave overtopping risks to pedestrians

E001 Toe Scour, Design Cond.

Water Research Laboratory

As modelled versus as built

11 11

Testing wave uplift pressures on a coastal walkway overhang

Physical model testing of breakwater design

Ocean pool research and design

Physical modelling of a Pacific Island during a cyclone

Tuvalu reef waves – 0.9 m wave flume

Ohau Point, New Zealand – 3 m wave flume

Physical model construction using hanbar armour units

Stepped seawall design testing – 1.2 m wave flume

As modelled versus as built