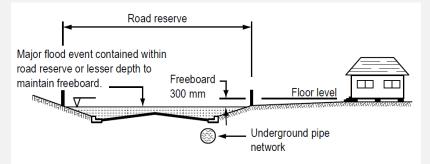


Pipe Network Modelling for Urban Inundation

Bill Syme and Chris Huxley



Today's Presentation Overview

Focus on pipe network modelling for modelling urban inundation

- 1st half on key theory Bill Syme
- 2nd half on practical and quality control considerations Chris Huxley

Building above top of kerb and channel

Qld Urban Drainage Manual (QUDM), 2016

Pipe Network Modelling for Urban Inundation

Theory

Theory Overview

Topics

- Pipe flow regimes
- Energy losses
 - Friction
 - Junctions / Manholes
- Overland flow capture
- Surcharging
- Blockages
- Operational structures

Theory Some Terminology

Velocities (V), for example

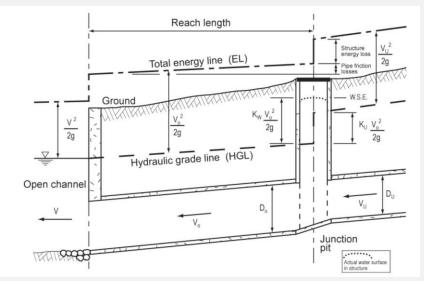
- V_i = Velocity in inflow pipe
- V_o = Velocity in outflow pipe

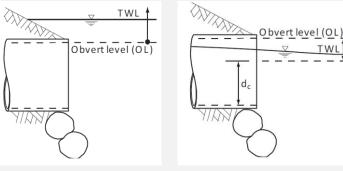
HGL (H)

- HGL (Hydraulic Grade Line)
 - Water level (for full pipe, the level in a vertical tube inserted in top of pipe)
- Total Energy = $H + V^2/2g$

Energy Loss Coefficient (K)

• The fraction of lost kinetic energy ($V^2/2g$)




Figure 7.16.1 Qld Urban Drainage Manual (QUDM), 2016

Pipe Flow Regimes Outlet Controlled

Outlet Controlled Flow Occurs Where

- Downstream water level influences the flow rate
 - Flow is subcritical or pressurised
 - Inlet and outlet energy and friction losses apply

- Free outflow (critical flow) at outlet
 - Inlet energy and friction losses apply

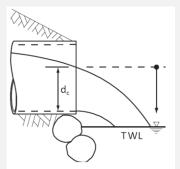


Figure 7.16.2 Qld Urban Drainage Manual (QUDM), 2016

Pipe Flow Regimes Inlet Controlled

Inlet Controlled Flow Occurs Where

- Inlet conditions control the flow rate
 - Super-critical flow
 - Sufficiently steep to transition into critical flow
 - Orifice flow transitions into critical flow

Note

- Downstream conditions have no affect on flow rate
- Entrance and exit energy losses not applicable

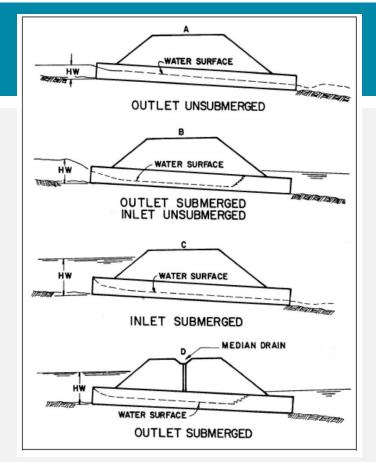
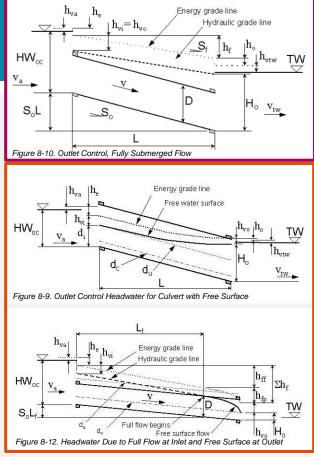


Figure III-1 HEC Hydraulic Design Charts


Friction Energy Losses Manning's Equation

 $\Delta H_f = S_f L$

Manning's equation

•
$$\Delta H_f = \left(\frac{nV}{R^{2/3}}\right)^2 L$$
 or $Q = \frac{AR^{2/3}}{n} \sqrt{\frac{\Delta H_f}{L}}$

- *n* is Manning's coefficient; R = A/P
- Straightforward calculation when pipe flowing full
 - *R* is fixed at $\frac{A}{P} = \frac{\pi r^2}{2\pi r} = \frac{r}{2}$
- Pipe partially full an open channel flow problem (not so straightforward – indeterminate equation)

http://onlinemanuals.txdot.gov/txdotmanuals/hyd/manual_notice.htm

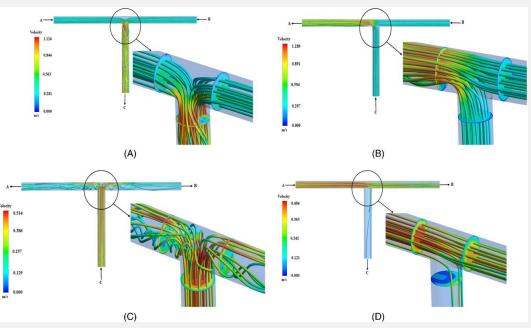
Friction Energy Losses Manning's n Values

Plenty of guidance in literature

Nature of Surface	Manning's n Range				
Concrete Pipe	0.011 - 0.013				
Corrugated Metal Pipe	0.019-0.030				
Vitrified Clay Pipe	0.012 - 0.014				
Steel Pipe	0.009-0.011				
Monolithic Concrete	0.012-0.017				
Cement Rubble	0.017-0.025				
Brick	0.014 - 0.017				
Laminated Treated Wood	0.015 - 0.017				
Open Channels					
Lined with Concrete	0.013 - 0.022	ļ			
Earth, clean, after weathering	0.018-0.020				

In: Viessman and Hammer. *Water Supply and Pollution Control, Sixth Edition.* 1998. (Table 6.1) Adapted from: *Design Charts for Open-Channel Flow.* U.S. Department of Transportation, Federal Highway Administration, Hydraulic Design Series No. 3, U.S. Government Printing Office, Washington, D.C. 1961.

R Pitt, S Clark: Flow in Pipes, Manning's Equation presentation



Kinetic Energy Losses Manholes, Junctions, Bends, Obstructions

 $\Delta H = K \frac{V^2}{2g}$

• Fraction (K) of kinetic energy loss

Manholes most common (and most hydraulically complex!)

B.D. Gajbhiye et al, Teaching turbulent flow through pipe fittings using computational fluid dynamics approach, Jan 2020 <u>https://onlinelibrary.wiley.com/doi/10.1002/eng2.12093</u>

Kinetic Energy Losses Manholes

Primary functions

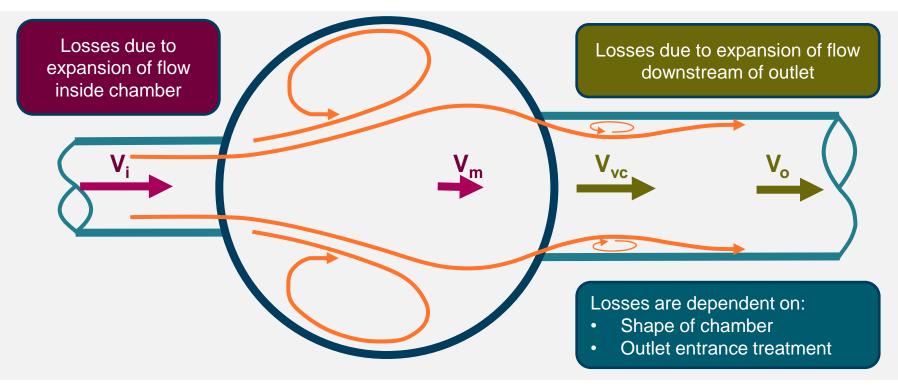
- Access for construction or maintenance
- Accommodate pipe transitions/changes
- Receive flow from above ground inlets

Kinetic Energy Losses Manholes

Manhole kinetic energy losses

- Expansion of inlet flows
- Expansion of flow downstream of outlet due to
 - Formation of a vena-contracta in an outlet pipe
 - Discharging into a receiving water body

Note: Above energy losses are relevant if a pipe is flowing in an outlet controlled flow regime



Kinetic Energy Losses Manholes

Additional kinetic energy losses Figure 7.6.1 Qld Urban Drainage Manual (QUDM), 2016 Change in horizontal alignment Change in vertical alignment Other effects such as kerb inlet flows if a significant % of total flow

Kinetic Energy Losses Manhole Inlet and Outlet Losses

Energy Losses Manholes – Modelling Approaches

Fix K

- Derived from
 - Desktop calculations
 - Flume or field measurements
- · If K varies with flow, not ideal for dynamic simulations
- · Plenty of values in the literature
- Be careful as to which velocity K applies to (Total K usually based on outlet velocity, V_o)

Vary K according to conditions

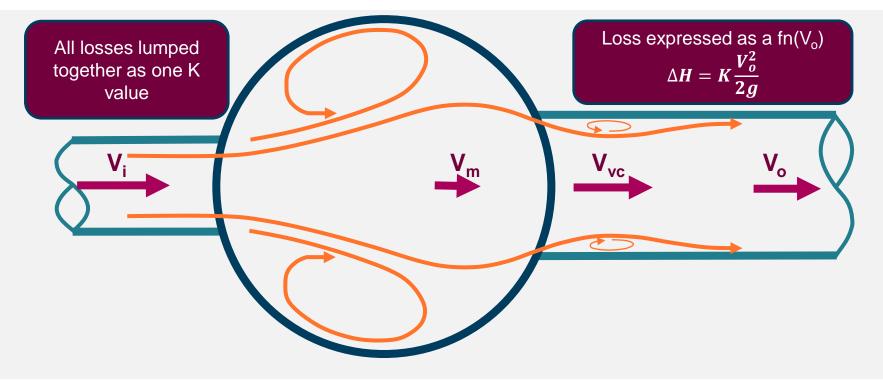
- Uses equations for different loss components
- Suits dynamic solutions recalculate K each timestep

A _u /A _o or A _o /A _u		Sharp	Contraction [3]				
	d/D	expansion [2]	Sharp edge	r/d = 0.02	r/d = 0.04	r/d = 0.06	r/d = 0.1
1	1.000	0.000	0.000	0.000	0.000	0.000	0.000
0.8	0.894	0.081	0.079	0.058	0.043	0.036	0.027
0.6	0.775	0.200	0.248	0.165	0.121	0.091	0.060
0.4	0.632	0.377	0.371	0.255	0.187	0.137	0.077
0.2	0.447	0.659	0.442	0.324	0.234	0.169	0.086
0.1	0.316	0.833	0.471	0.353	0.245	0.180	0.087
0	0.000	1.000	0.500	0.376	0.250	0.185	0.087

Table 7.16.7 – Energy loss coefficients for flow expansions and contractions within pipes^[1]

Notes:

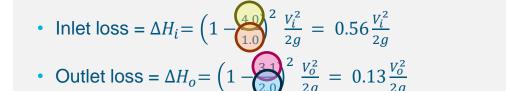
] Sourced from Miller (1990).


[2] Energy loss coefficient (K_{exit}) relative to upstream velocity head ($V_u^2/2g$).

Energy loss coefficient (K_{entry}) relative to downstream velocity head (V_o²/2g).

Table 7.16.7 Qld Urban Drainage Manual (QUDM), 2016

Energy Losses Manholes – Fixed K Approach


Energy Losses Manholes – Fixed K Desktop Example

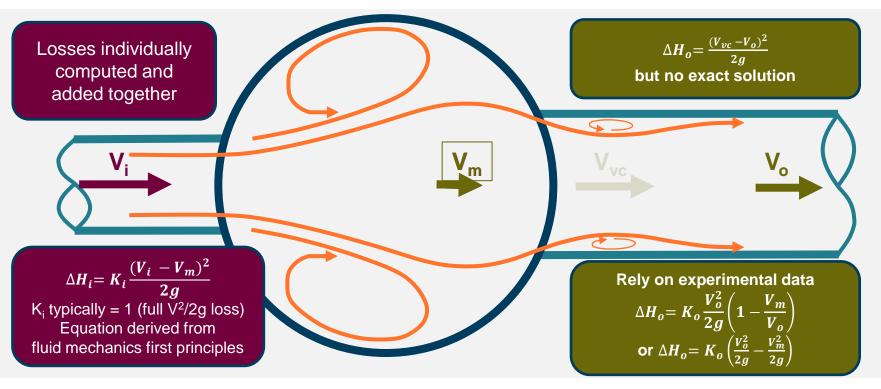
Assuming only inlet and outlet losses (pipes are aligned)

• Expansion loss (derived from first principles) = $\frac{(V_{us} - V_{ds})^2}{2a} = \left(1 - \frac{V_{ds}}{V_{us}}\right)^2 \frac{V_{us}^2}{2a}$

20% total contraction at vena-contracta

1.0 n/s

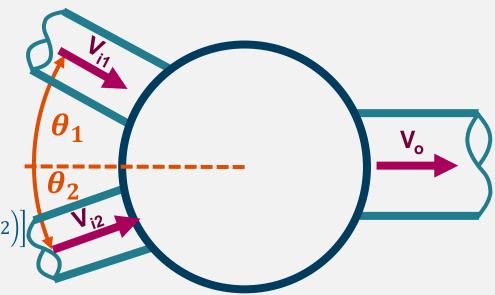
Let's base energy loss on V_o (2 m/s) (4.0 m/s)


• $\Delta H = K \frac{V_o^2}{2g} = \Delta H_i + \Delta H_o$

•
$$K = \frac{2g}{V_o^2} (\Delta H_i + \Delta H_o) = 0.56 \frac{V_i^2}{V_o^2} + 0.13$$

• K = 2.4 (note, K \neq 0.56 + 0.13)

Energy Losses Manholes – Variable Energy Loss Approach


Additional Energy Losses Manholes – Variable Energy Loss Approach

Unaligned pipe losses

- Angle of approach differs to outflow pipe(s)
- Handles multiple inflow pipes
- $K_{\theta} = \sum_{i} \left[f_{i} \min\left(\frac{\theta_{i}^{2}}{90^{2}}, 4\right) \right]$
- $f_i = \frac{Q_i}{\sum Q_o}$ (fraction of total flow)

Change in pipe invert elevations

•
$$K_z = \sum_i \left[min\left(max\left(\frac{f_i(h_o - h_i)(h_0 + y_o - h_i - y_i)}{y_o y_i}, 0 \right) \right) \right]$$

Minimising Energy Losses Manholes

Maintain velocities through manhole

- Keeping chamber size to minimum
- Minimise turbulence/eddies
- Benching

Direct flow to centre of outlet

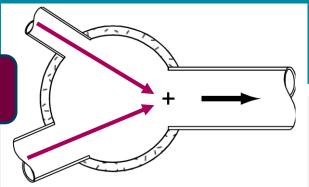
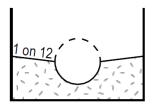



Figure 7.6.2 Qld Urban Drainage Manual (QUDM), 2016

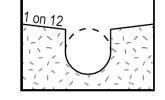


Figure 7.16.4 Qld Urban Drainage Manual (QUDM), 2016

Minimise vena-contracta effect in outlet pipe

• e.g. using Bellmouth entrance

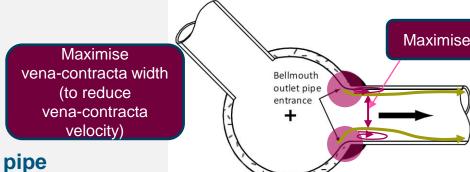


Figure 7.6.3 Qld Urban Drainage Manual (QUDM), 2016

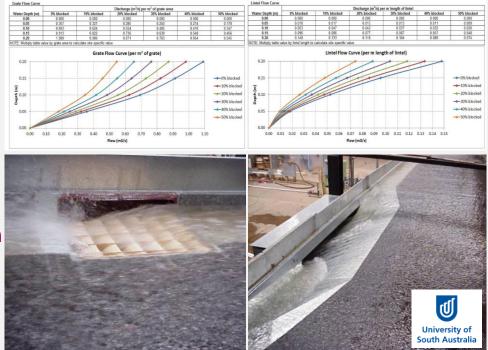
Above Ground Flow Capture Inlets/Pits/Drains/Gully Traps

Captures road or overland flow into pipe network

- Many, many approaches!
- May also backflow or surcharge (intentionally or unintentionally!)

Different terminologies, same function

- Pits
- Inlets / Kerb inlets
- Drains
- Gully traps

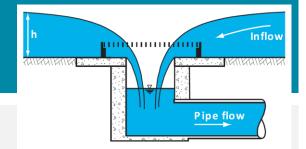


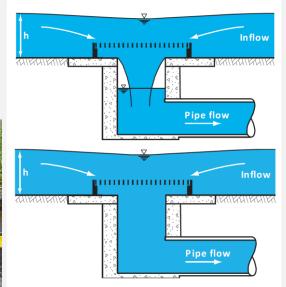
Above Ground Flow Capture On-Grade Kerb Inlets

Drains water from road kerbing

- Flow higher flows, bypass flow occurs (Steeper the road, greater the bypass flow)
- Use approach flow vs capture flow (Q-Q), or depth vs capture flow (y-Q) curves
 - Derived from flume/field measurements or theory
 - Can convert Q-Q to a y-Q curve using Manning's equation

Critical to have accurate representation of above ground depth or approach flow




Above Ground Flow Capture Sag Inlets

Drains ponded water

- Best modelled using depth-discharge relationship
 - Derived from flume/field measurements or theory
- Assume no bypass flow
- High probability of debris impeding flow

Figures 7.5.4, 7.5.5, 7.5.6 Qld Urban Drainage Manual (QUDM), 2016

Flow Surcharging Inlet Backflow

Backflow occurs where pipe pressure (head) exceeds ground level

Often cause of unintentional flooding

Causes

- Pipe design capacity exceeded
 - Which maybe the intended design, for example
 - Pipes designed for 1 in 10 AEP
 - Roadways and overland flow paths > 1 in 10 AEP
- Blockage in the pipe network
- Backflow from receiving waters
 - River in flood or elevated tidal levels

May need different y-Q curve to capture flow

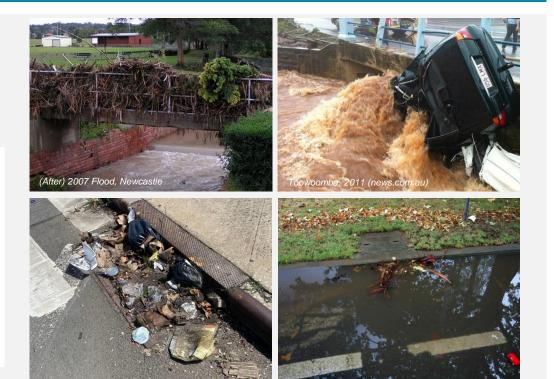
 If ground flooded, backflow flow rate may be controlled by ground flood depth

Flow Surcharging Manhole Lid Popping

Manhole lid popping

- Usually unintended pressure exceeds downward forces
- Suddenly causes backflow
- Modelling requires conditions around when lid will pop

Blockages


Major problem, managed via

- Trash racks and gross pollutant traps
- Debris deflectors
- Maintenance programs

Table 7.5.1 – Provision for blockage at kerb inlets

	Blockage factor			
Inlet type	Design value ^[1]	Severe conditions ^[2]		
Sag kerb inlets:				
Kerb inlet	20%	100 %		
Grated	50 %	100%		
Combination	[3]	100%		
Continuous (on-grade) kerb inlets:				
Kerb inlet	20%	100%		
Longitudinal bar grated	40%	100%		
Transverse bar grate or longitudinal bar grate incorporating transverse bars	50%	100%		
Combination	[4]	100%		
Field (drop) inlets:				
Flush mounted	80%	100%		
Elevated (pill box) horizontal grate	50%	100%		
Dome screen	50%	100%		
Open pipe inlets (blockage factors as per culverts)	Refer to Table 10.4.1			

Table 7.5.1 Qld Urban Drainage Manual (QUDM), 2016

Operational Structures

Example

- Backflow prevention devices
- Pumps
- Gates

Upcoming Webinar

Operational Structure Modelling using TUFLOW

Presenters: Phillip Ryan and Dr Shuang Gao April 13, 2022

TUFLOW

aws Australian Water Schoo

Pipe Network Modelling for Urban Inundation Hands-on Modelling Quality Control Discussion / Demonstration

