

Modelling Energy Losses at Structures

Bill Syme

Modelling Hydraulic Structures Today's Focus

Today: Cross-Drainage Structures

Bridges and Culverts

Pipe Networks To be covered in webinar Feb 16, 2022

• Inlets, Pipes, Manholes

Operational Structures To be covered in webinar Apr 13, 2022

• Gated structures, Pumps, etc

Modelling Hydraulic Structures Agenda

A bit of theory

• What are energy or form losses?

Modelling Approaches

• 1D, 2D, 3D

Benchmarking

Constrictions, Piers and Decks

First presented on this topic in 2001!

- Syme, W.J. (2001) Modelling of Bends and Hydraulic Structures in a Two-Dimensional Scheme The Institution of Engineers, Australia Conference on Hydraulics in Civil Engineering, Hobart, November 2001
- <u>https://www.tuflow.com/media/4984/2001-modelling-of-bends-and-hydraulic-structures-in-a-2d-scheme-syme.pdf</u>

Figure 5 - Flow Patterns for 2D Box Culvert Models (Culvert as 2D Cells on Top and Culvert as 1D Element at Bottom)

Modelling Hydraulic Structures What are Form Losses?

What are Form Losses? Energy Dissipation

Energy of flowing water is dissipated as heat primarily due to

- Bed resistance (e.g. Manning's equation)
- Changes in flow formation (wherever there is change in velocity magnitude and direction)

Changes in flow formation pronounced at

- Bends
- Constrictions (e.g. cross-drainage structures)
- Referred to as Form Losses

What are Form Losses? Understanding the Energy of Water

Total Energy = $h + V^2/2g$

= water level + kinetic energy

Form Losses

- Loss of kinetic energy, V²/2g
- V = 1 m/s; kinetic energy = 0.05 m
- V = 4 m/s; kinetic energy = 0.82 m

Form loss coefficient (K)

• Proportion of kinetic energy (V²/2g) lost

What are Form Losses? Right-Angled Bend Example – 1D versus 2D

What are Form Losses? River Bend Form Losses

1D Equations

- Don't simulate form losses
- Need to apply a form (bend) loss

2D Equations

- Simulates form losses
- But don't simulate all form losses such as those in the vertical (eg. helicoidal circulations)

3D Equations

- Layered 3D should be closer again, but there are assumptions
- CFD using the Navier-Stokes equations should be closest

Can't use the same form loss coefficients between 1D, 2D and 3D

Brisbane River Catchment Comprehensive Flood Study

Modelling Hydraulic Structures 1D Approach

1D Approach Entrance/Exit Loss Coefficients

Velocities are uni-directional

1D cannot implicitly simulate form losses

Need to explicitly specify energy lost using form loss coefficients

$$\Delta h = (K_{en} + K_{ex}) \frac{V_s^2}{2g}$$

1D Approach Need to Adjust Loss Coefficients with Height

1D Approach Need to Adjust Loss Coefficients with Height

 $K_{en_adj} = K_{en} \left[1 - \frac{V_{app}}{V_s} \right]$ - based on testing

 $K_{ex_adj} = K_{ex} \left[1 - \frac{V_{dep}}{V_s} \right]^2$ - derived from theory

• Published values for K_{en} and K_{ex} typically for $V_{app} = 0$ and $V_{dep} = 0$

• $K_{en} = 0.2$ to 0.7 - depends on entrance configuration – use 0.5 if in doubt

 K_{ex} = 1.0 but in some situations maybe less depending on how outlet is modelled

Energy loss is $\Delta h = (K_{en} + K_{ex}) \frac{V_s^2}{2g}$

Table 7.16.5 – Entrance (energy) loss coefficients [1]

Type of structure and design of entrance	Coefficient K _e
Concrete pipe:	
Projecting from fill, socket end (groove end)	0.2
Projecting from fill, square cut end	0.5
Headwall or headwall and wing walls:	
socket end of pipe (groove end)	0.2
square edge	0.5
 rounded (radius = D/12) 	0.2
mitred to conform to fill slope	0.7
end section conforming to fill slope.	0.5
Hooded inlet projecting from headwall	Note [2]
Corrugated metal pipe:	
Projecting from fill (no headwall)	0.9
Headwall or headwall and wing walls square edge	0.5
Mitred to conform to fill slope	0.7
End section conforming to fill slope	0.5
Reinforced concrete box:	
Headwall parallel to embankment (no wing walls):	
square edged on 3 edges	0.5
 rounded on 3 edges to radius of 1/12 barrel dimension. 	0.2
Wing walls at 30° to 70° to barrel:	
square edged at crown	0.4
crown edge rounded to radius 1/12 barrel dimension.	0.2
Wing walls at 10° to 25° to barrel:	
square edged at crown.	0.5
Wing walls parallel (extension of sides):	
square edged at crown.	0.7
OUDM 2017	•

1D Approach Need to Adjust Loss Coefficients with Height

Modelling Hydraulic Structures 2D Approaches

2D Approach Looks Impressive

But is it accurate?

Q: Does it implicitly model form losses?

- A: It does, but it can't model all of them
- 2D does not account for
 - Sub-cell form losses (e.g. piers, vena-contracta)
 - 3D form losses (e.g. helicoidal flows, vertical movement)

Q: How do we account for missing form losses?

A: Very good question!

2D-2D-2D Approach How to account for missing form losses?

Not applicable to apply 1D form losses

Otherwise duplicates losses

Options

- Add additional (small) form losses
- Use a finer mesh (often not practical though)

Other considerations

Losses sub-cell need a good turbulence model

e.g. vena-contracta form losses need a very fine mesh

2D-1D-2D Approach Can we apply 1D form losses, K_{en} and K_{ex} ?

NO!

- 2D entrance losses will now mostly occur in 1D element
- But, partial or all exit losses still occur in 2D cells

Therefore, not correct to apply all 1D form losses

Otherwise duplicates losses

Vena-contracta form losses now occur in 1D element

Modelling Hydraulic Structures **3D Approaches**

3D Approaches Layered 2D

Horizontal mixing of mass and momentum

- Sigma, Z or Z-Sigma hybrid vertical geometry
- Eddy viscosity models used for sub-grid scale mixing (Wu, Smagorinsky, etc)

Vertical mixing of mass and momentum

- Mixed vertically due to shear between layers and associated turbulence
- Eddy viscosity models used for sub-grid scale mixing (e.g. k-epsilon, k-omega)
- · Can be influenced by stratification/buoyancy
- Hydrostatic assumption
 - · Vertical acceleration of fluid motion is assumed to be negligible

The next phase in hydraulic structure modelling?

TUFLOW FV 3D Form Drag and Blockage

3D Approaches CFD (Computational Fluid Dynamics)

CFD solvers

- Compute full 3D fields for pressure, velocity and turbulence
- No hydrostatic assumption
- Full Navier-Stokes fluid equations

Mesh

- Very high resolution represents structure in detail
- No sub-modelling of blockage factors or loss coefficients

Eddy viscosity model critical (for non-laminar flows)

Very long simulation times

Not yet practical for most real-world flood study investigations

3D Approaches Physical Modelling

There is (was) a saying:

"No one believes a computer model (except for the modeller)

but everyone believes a physical model (except for the modeller)"

Modelling Hydraulic Structures
Constrictions

Constrictions Benchmark Test

Test model square edged constriction

- 30 m wide, 1,000 m long channel
- 10 m wide, 10 m long culvert
- Q = 45 m/s, h = 2 m
- U = 0.75 m/s without culvert
- Manning's n = 0.030
- Slope = 0.0002

1,000 m

Flow

Constrictions – Benchmark Test 1D-1D-1D Model

1D-1D-1D Model

Afflux 1D solution = 276 mm

Desktop calculation of losses

- $K_{en_adj} = 0.5 \left[1 \frac{0.66}{2.4} \right] = 0.36$
- $K_{ex_adj} = 1.0 \left[1 \frac{0.75}{2.4} \right]^2 = 0.48$
- $\Delta h_{form \, loss} = \frac{K_{en_adj} + K_{ex_adj}}{2g} V_s^2 = 250 \, \mathrm{mm}$
- plus $\Delta h_{Extra \ bed \ friction} = 21 \ mm$
- Afflux = 271 mm

$$K_{en_adj} = K_{en} \left[1 - \frac{V_{app}}{V_s} \right]$$
 - based on testing
 $K_{ex_adj} = K_{ex} \left[1 - \frac{V_{dep}}{V_s} \right]^2$ - derived from theory

Constrictions – Benchmark Test 1D-1D-1D – No Adjustment of Losses

What happens if the structure losses are not adjusted?

- $K_{en} = 0.5$
- $K_{ex} = 1.0$

Afflux is over-predicted

- Represents the case of still water to still water (e.g. lake discharging to another lake)
- $V_{approach}$ and $V_{departure} \sim 0.0$

Note: Published K values are usually based on this scenario

Let's model in 2D only

• 10, 5, 2.5,1 and 0.5 m

Let's model in 2D only

- 10, 5, 2.5,1 and 0.5 m
- Afflux increases with smaller cell size

Let's model in 2D only

- 10, 5, 2.5,1 and 0.5 m
- Afflux increases with smaller cell size
 - Finer meshes better resolve form losses

2.5 m grid

• • • • • • • • • • • • • • • • • • • •	/	
	1	Water Level
		<= 2.050000
		2.050000 - 2.100000
		2.100000 - 2.150000
	<mark>> </mark>	2.150000 - 2.200000
		2.200000 - 2.250000
		2.250000 - 2.300000
		2.300000 - 2.350000
		2.350000 - 2.400000
• • • • • • • • • • • • • • • • • • • •		2.400000 - 2.450000
		> 2.450000

Let's model in 2D only

- 10, 5, 2.5,1 and 0.5 m
- Afflux increases with smaller cell size
 - Finer meshes better resolve form losses

1 m grid

Water Level <= 2.050000 2.050000 - 2.100000 2.100000 - 2.150000 2.150000 - 2.200000 2.200000 - 2.250000 2.250000 - 2.300000 2.300000 - 2.350000 2.350000 - 2.400000 2.400000 - 2.450000 > 2.450000

Let's model in 2D only

- 10, 5, 2.5,1 and 0.5 m
- Afflux increases with smaller cell size
 - Finer meshes better resolve form losses
- 0.5 m grid

Constrictions – Benchmark Test 2D-2D-2D – Calibration

Fine mesh

- Sub-grid turbulence representation critical
- Wu = 4 best match to theoretical result
- 0.2 m pressure / 0.1 m turbulence

Constrictions – Benchmark Test 2D-2D-2D – 1st Order Check

Not all 2D solvers are the same!

- Repeat runs using TUFLOW HPC's 1st order option
- Numerically diffusive causes artificial energy losses
- Reduced Manning's n or turbulence needed

Constrictions – Benchmark Test 2D-2D-2D Coarse Mesh with Additional Form Loss

Constrictions – Benchmark Test 2D-2D-2D Coarse Mesh Mismatch

What if the 2D cell size mismatches opening?

- Common issue for fixed grid solvers
- Poor reproduction of afflux •

Constrictions – Benchmark Test 2D-2D-2D Coarse Mesh Mismatch with SGS

Now correct opening with SGS

What if the 2D cell size mismatches opening?

- Common issue for fixed grid solvers
- Sub-Grid Sampling (SGS) helps enormously

7.5 m

Constrictions – Benchmark Test 2D-1D-2D – Unadjusted Loss Coefficients

Let's insert a 1D constriction

 Source transfer of water in/out of 1D element (SX Link in TUFLOW)

Overpredicts afflux

As expected due to duplication of losses

Constrictions – Benchmark Test 2D-1D-2D – Adjust Loss Coefficients

Reduce 1D form losses to account for duplication

- Try 1D adjusted losses (0.36 / 0.48)
 - Still too high an afflux
- Reduce exit form loss
 - 0.36 / 0.30 provides good match

Constrictions – Benchmark Test 2D-1D-2D – 2D Velocity Adjustment

Modelling Hydraulic Structures
Piers using Fine Mesh

Piers Cause a Constriction

1D approach

- Apply form loss (e.g. K_p HBW)

2D fine mesh

2D using form losses

- Apply form loss
- But how to apply 1D K_p values?
 - Across whole waterway, or
 - Factor up by waterway cell ratio

Piers using a Fine Mesh Flume Benchmark Test

Flume test by Kimura et al (2005)

- 20 cm wide, 10 m long flume
- 4 cm by 4 cm square pier
- Q = 415 cm³/s
- Depth = 1.14 cm
- Slope = 1/1000
- Manning's n estimated to be 0.0088

Piers using a Fine Mesh Flume Benchmark – Fine Mesh

Primary parameter to test is turbulence eddy viscosity coefficient

• Wu turbulence model (isotropic)

Varied Wu parameter from 0.2 to 7.0

• TUFLOW 2020 default is 7.0

Piers using a Fine Mesh Flume Benchmark – Fine Mesh

2005)

Primary parameter to test is turbulence eddy viscosity coefficient

Wu turbulence model (isotropic)

Varied Wu parameter from 0.2 to 7.0

TUFLOW 2020 default is 7.0

Cell size = 4mm

C3D = 0.2(Kimura et al Wake vortices modelled explicitly C3D = 1.0C3D = 7.0Depth / Vector Velocity $\leq = 0.009000$ 0.009000 - 0.010000 Wake vortices modelled 0.010000 - 0.011000 0.011000 - 0.012000 as sub-grid turbulence 0.012000 - 0.013000 0.013000 - 0.014000

> 0.014000

Piers using a Fine Mesh Flume Benchmark – Fine Mesh Observations

Primary parameter to test is turbulence eddy viscosity coefficient

- Tested Wu parameter 0.2 to 7.0
- Good match to measured afflux in all cases
- Lower eddy viscosity needed to reproduce wake vortices

Piers using a Fine Mesh Flume Benchmark – Cell Size Results Convergence

Cell size results convergence test

- Increased cell size from
 - 0.4 cm (10 cells across pier), to
 - 2.0 cm
 (2 cells across pier)

Piers using a Fine Mesh Flume Benchmark – Cell Size Results Convergence

Increasing cell sizes

- Still provides reasonable reproduction of afflux
- Loses ability to simulate downstream eddy structure

Piers using a Fine Mesh Circular Piers

Circular pier cell sizes

 Most of the real-world piers are hydraulically "smooth"

Piers using a Fine Mesh Circular Piers

Circular pier cell sizes

- High resolution flexible mesh is needed to represent hydraulically "smooth" pier
- Regular grid may overestimate the head loss, even with SGS

Modelling Hydraulic Structures Piers using Form Losses

Piers using Form Losses Case Study

Case Study: Jingling Bridge, China

Pier widths sub-cell or less than several cells

Options

- Try blocking cells with piers (quick to do)
- Apply 1D form loss (e.g. HBW K_p) across waterway
- Apply form losses individually to pier cell(s)

Q: Should we reduce the cell flow area by the pier area when applying form losses?

Piers using Form Losses Apply Pier Blockage?

Apply pier blockage?

- 2D solution uses the velocity at the cell
- If pier blockage applied, 2D velocity slightly higher, therefore, slightly higher afflux
- Clarify the basis for K_p
 - For HBW, Kp assumes area of the piers is not used in the determination of the velocity
 - Therefore, should not apply blockages from piers
 - Or, reduce Kp to allow for the higher velocities caused by applying pier blockages

 A_1 = total water area at section I - sq ft.

If piers are present in the constriction, these are ignored in the determination of A_{n2} . The velocity V_{n2} does not represent an experimentally measured velocity but rather a reference velocity readily computed for both model and field structures.

For practical purposes, the backwater is simply the product of K*, the backwater coefficient, which was determined experimentally, and the velocity head $V_{n2}^2/2g$. The expression

$$\alpha \left[\left(\frac{A_{n2}}{A_4} \right)^2 - \left(\frac{A_{n2}}{A_1} \right)^2 \right]$$

Applying pier blockage is usually slightly conservative (which may not be a bad thing!)

https://wiki.tuflow.com/index.php?title=TUFLOW_FAQ#What_form_loss_coefficient_.28FLC.29_values_should_I_use_for_2d_lfcsh_bridge.3F

Piers using Form Losses Case Study Velocity Field

No bridge velocity field

Piers using Form Losses Whole Cells Blocked Out

Pier cells blocked out (no SGS)

Always problematic for fixed grid or coarse flexible mesh?

Piers using Form Losses Apply HBW Kp Pier Form Loss

HBW analysis: $K_p = 0.14 (J = 0.073)$

- Must apply across entire waterway
- Presence of piers does not show in velocity field

Piers using Form Losses Apply HBW Kp Pier Form Loss + Blockage

- $K_p = 0.14$ and pier blockage = 7.3%
- Must apply across entire waterway
- Presence of piers does not show in velocity field
- Blockage causes line of slightly higher velocities across entire waterway

Piers using Form Losses Form Loss Pier Cell(s) Only

Piers using Form Losses Form Loss Pier Cell(s) Only

Apply factored up K_p to pier cells

- Presence of piers shows in velocity field
- Effect of individual piers can be assessed

Piers using Form Losses Form Loss Pier Cell(s) Only + Blockage

Piers using Form Losses Case Study – Afflux Comparison

Desktop check

- Average V $_{\rm s}$ ~ 2.0 m/s gives an afflux ~ 29 mm

	Afflux (mm) (Compared to No Bridge)		30.55	No Blo	Bridge ck Cells Out
Approach to Pier Losses	TUFLOW Classic (2011-09)	TUFLOW HPC (2020-10)	30.45 الت الت 30.35	Kp - Kp - Fac - Fac	+ Blockage Across Waterway tored Kp at Pier Cells tored Kp + Blockage at Pier Cells
HBW Desktop Analysis	29		rLev	HB1	W
Block whole cells out	51	78	Aate Vate		
Kp Across Waterway	28	25	> 30.15		
Kp + Blockage Across Waterway	33	29			
Factored Kp at Pier Cells	33	31	30.05		
Factored Kp + Blockage at Pier Cells	40	57	0	200 400 600 Distance [m]	0 800 1000

Modelling Hydraulic Structures Decks

Bridge Decks – TMR/TUFLOW Investigation Objectives

Improve bridge deck representation in flood models

• Reduce uncertainty of hydraulic model results and lead to better bridge designs

Benchmarking and comparison testing

- Measured data
- CFD modelling
- TUFLOW modelling

Joint research Qld TMR and TUFLOW

Slides courtesy of: Urs Baeumer Manager – Hydraulics and Flooding Transport and Main Roads Dept, Qld Gov

Presentation scheduled for TMR Tech Forum, Feb 2022

New Hydraulic Loss Model for bridge decks

A joint research study between the Department of Transport and Main Roads (TMR) and TUFLOW

Urs Baeumer, Manager, TMR, and Bill Syme, TUFLOW Software Manager, BMT Group

Bridge Decks – TMR/TUFLOW Investigation Preliminary CFD Modelling of Standard Decks

Bridge Decks – TMR/TUFLOW Investigation New Approaches in 2D and 3D

Benchmarking

- New methods for modelling bridges in 2D using TUFLOW HPC
- New 3D layer blockage and form drag feature in TUFLOW FV
- Improve representation for pressure flow and submergence

Bridge Decks – TMR/TUFLOW Investigation Gordon Rd Bridge – Field Data Gauges

Images sourced: Aquamonix Installation Report AIS-AQ16692, MBRC

Bridge Decks – TMR/TUFLOW Investigation Gordon Rd Bridge – Modelling

Bridge Decks – TMR/TUFLOW Investigation Gordon Rd Bridge Modelling – Early Results

Early Results

- From first event good to reasonable match between gauges, FLOW-3D, OpenFoam and TUFLOW
- Good match using same TUFLOW calibration parameters as derived for lowa Bridge, USA
- Hoping(!) for significant overtopping flood events this summer
- So far increased confidence in ability of TUFLOW and CFD modelling to reproduce reality

Modelling Hydraulic Structures
Conclusions

Conclusions Constrictions

2D models contract and expand flow lines

Implicitly models form losses if using complete version of the 2D equations

Not all losses are represented

- Coarse meshes will not reproduce losses to same degree as fine meshes
- 3D (vertical) and sub-cell, fine-scale losses not represented
- Need ability to add (minor) form losses (benchmark and calibrate)

1st Order 2D schemes diffusive and overpredict losses – benchmark your software!

Linking 1D structures into 2D

- Useful when the structure is small relative to the 2D cell size
- Large structures (relative to 2D cell size) may duplicate (over predict) losses
- May need to reduce entrance/exit losses (benchmark and calibrate)

Conclusions Piers

Piers

- Fine mesh, preferably flexible mesh can reproduce affluxes
 - Sub-grid sampling (SGS) helps for fixed grid meshes
 - Quality sub-cell turbulence scheme needed for modelling wakes
- Using form losses best approach for coarse meshes
 - Produces accurate affluxes
 - Can represent piers individually by treating each pier separate K_p analysis and factoring up
 - Careful applying pier blockage to flow area K_p values may assume this is not the case

Conclusions Decks

TMR/TUFLOW Investigation

- Provide improved approaches and guidelines for representing decks
- Benchmarked against
 - CFD modelling
 - Field measurements

Finally, as always, benchmark, cross-check and understand your results

• A simple "What proportion of the V²/2g has been lost?" check will often do!

Thank you

